簡易檢索 / 詳目顯示

研究生: 宋朝凱
Chao-kai Sung
論文名稱: 固態氧化物燃料電池渦輪混成發電
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 61
中文關鍵詞: 固態氧化物燃料電池氣渦輪機系統動態
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本論文目的在建立高溫式固態氧化物燃料電池/氣渦輪混成發電系統之理論分析、數值模擬及性能評估工具,並針對各種不同系統設計的固態氧化物燃料電池/氣渦輪混成發電系統循環進行性能比較與動態控制,以得到最佳穩態性能並縮短啟動延遲。

    模擬方面,先由熱流與電化學基本理論建立燃料電池數學模式,之後再加入氣渦輪發電系統動態、再生系統和燃燒器等元件,將所得到的數學模式以方塊圖法建立在Matlab/Simulink上,做混成系統性能及熱效率分析。設計方面,利用方塊圖法在Simulink模擬平臺之上建立各種混成發電系統組合,針對影響固態氧化物燃料電池及氣渦輪機性能的幾項參數設定如燃料溫度、進氣壓力及氣渦輪機的轉速等,做各系統的比較,可比較出最佳的系統組合。本論文所建立之固態氧化物燃料電池渦輪混成發電系統設計及熱效率分析軟體為通用模式,亦適用於可攜式及固定式發電系統。


    摘要 Ⅰ 誌謝 Ⅱ 目錄 Ⅲ 表目錄 Ⅴ 圖目錄 Ⅵ 方程式符號表 Ⅷ 第一章 緒論 1 1.1前言 1 1.2研究目的與方法 2 1.3文獻回顧 3 第二章 混成發電系統理論模式 6 2.1氣渦輪發電系統 6 2.1.1氣渦輪與壓縮機 6 2.1.2發電機 7 2.2固態氧化物燃料電池系統 8 2.2.1內部重組器 8 2.2.2固態氧化物燃料電池電壓 10 2.2.3固態氧化物燃料電池過電壓 11 2.2.4固態氧化物燃料電池壓力模式 12 2.2.5固態氧化物燃料組及其熱模式 14 2.3熱流元件 15 2.3.1燃燒器 15 2.3.2熱交換器 16 2.3.3節流閥 16 第三章 混成發電系統動態模擬 18 3.1固態氧化物燃料電池模擬 18 3.2混成發電系統模擬 19 3.2.1混成發電系統啟動模擬 20 3.2.2混成發電系統電流變化模擬 22 3.2.3混成發電系統壓力變化模擬 23 3.3混成發電系統效率分析 24 第四章 系統設計與架構比較 26 4.1混成系統架構模擬比較 26 4.2混成發電系統效率分析 28 第五章 結論與未來建議工作 29 5.1結論 29 5.2未來建議工作 30 參考文獻 31

    [1]S. Hauff, K. Bolwin,“Thermal Relaxation during Dynamic Fuel Cell Operation,” Journal of Power Sources, Vol.55, pp.167-176, 1995.
    [2]W. Lehnert, J. Meusinger, F. Thom, “Modelling of Gas Transport Phenomena in SOFC Anodes,” Journal of Power Sources, Vol.87, pp.57-63, 2000.
    [3]D. Anaoly, T. Panagiotis, “Thermodynamic Analysis of a Hydrogen Fed Solid Oxide Fuel Cell Based on a Proton Conductor,” International Journal of Hydrogen Energy, Vol.26, pp.1103-1108, 2001.
    [4]H. Yakabe, T. Ogiwara, M. Hishinuma, I. Yasuda, “3-D Model Calculation for Planar SOFC,” Journal of Power Sources, Vol.102, pp.144-154, 2001.
    [5]B. Todd, J. B. Young, “Thermodynamic and Transport Properties of Gases for Use in Solid Oxide Fuel Cell Modelling,” Journal of Power Sources, Vol.110, pp.186-200, 2001.
    [6]L. Petruzzi, S. Cocchi, F. Fineschi, “A Global Thermo- Electrochemical Model for SOFC Systems Design and Engineering,” Journal of Power Sources, Vol.118, pp.96-107, 2003.
    [7]T. Ota, M. Koyama, C. J. Wen, K. Yamada, H. Takahashi, “Object-Based Modeling of SOFC System: Dynamic Behavior of Micro-Tube SOFC,” Journal of Power Sources, Vol.118, pp.430-439, 2003.
    [8]S. Murthy, A. G. Fedorov, “Radiation Heat Transfer Analysis of The Monolith Type Solid Oxide Fuel Cell,” Journal of Power Sources, Vol.124, pp453-458, 2003.
    [9]K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electrochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol.113, pp109-114, 2003.
    [10]A. M. Al-Qattan, D. J. Chmielewski, S. Al-Hallaj, J. R. Selman, “A Novel Design for Solid Oxide Fuel Cell Stacks,” Chemical Engineering Science, Vol.59, pp.131-137, 2004.
    [11]A. Layne, N. Holcombe, “Fuel Cell/Gas Turbine Hybrid Power Systems for Distributed Generation,” ASME International IGTI, Global Gas Turbine News, Vol.40, No.2, pp.4-7, 2000.
    [12]P. Costamagna, L. Magistri, A. F. Massardo, “Design and Part-Load Performance of A Hybrid System Based on A Solid Oxide Fuel Cell Reactor And A Micro Gas Turbine,” Journal of Power Sources, Vol.96, pp352-368, 2001.
    [13]K. Nisida, T. Takagi, S. Kinoshita, T. Tsuji, “Performance Evaluation of Multi-Stage SOFC and Gas Turbine Combined Systems,” Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30109, June 3-6, 2002.
    [14]S. Kimijima, N. Kasagi, “Performance Evaluation of Gas Turbine-Fuel cell Hybrid Micro Generation System, “ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30112, June 3-6, 2002.
    [15]Y. Zhu, K. Tomsovic, “Development of Models for Analyzing The Load-Following Performance of Microturbines And Fuel Cells,” Electric Power System Research, Vol.62, pp1-11, 2002.
    [16]W. Winkler, H. Lorenz, “The Design of Stationary And Mobil Solid Oxide Fuel Cell-Gas Turbine Systems,” Journal of Power Sources, Vol.105, pp222-227, 2002.
    [17]D. Bohn, N. Poppe, J. Lepers,“ Assessment of The Potential of Combined Micro Gas Turbine and High Temperature Fuel Cell Systems,“ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30111, June 3-6, 2002.
    [18]S. E. Veyo, S. D. Vora, K. P. Litzinger, W. L. Lundberg, “ Status of Pressurized SOFC/Gas Turbine Power System Development at Siemens Westinghouse,“ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30670, June 3-6, 2002.
    [19]L. Magistri, R. Bozzo, P. Costamagna, A. F. Massardo, “Simplified Versus Detailed SOFC Reactor Models and Influence on The Simulation of The Design Point Performance Hybrid Systems, “ Proceedings of ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30653, June 3-6, 2002.
    [20]J. Padulles, G. W. Ault, J. R. McDonald, “An integrated SOFC plant Dynamic Model for Power Systems Simulation,” Journal of Power Sources , Vol.86 , pp.495-500 , 2000.
    [21]P. Aguiar, D. Chadwick, L. Kershenbaum, “ Modelling of an Indirect Internal Reforming Solid Oxide Fuel Cell,“ Chemical Engineering Science, vol.57, pp.1665-1677, 2002.
    [22]P. Jens, S. Azra, S. Lars, “ Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation,“ Journal of Power Sources, Vol.86, pp.442-448, 2000
    [23]S.H. Chan, H.K. Ho, Y. Tian, ” Modelling of Simple Hybrid Solid Oxide Fuel Cell and Gas Turbine Power Plant, ” Journal of Power Sources, vol.109, pp.111-120, 2000.
    [24]S.H. Chan, H.K. Ho, Y. Tian, ” Modelling for Part-Load Operation of Solid Oxide Fuel Cell-Gas Turbine Hybrid Power Plant, ” Journal of Power Sources, vol.114, pp.213-227, 2003.
    [25]S. Azra, P. Jens, ” Networked Solid Oxide Fuel Cell Stacks Combined with a Gas Turbine Cycle, ” Journal of Power Sources, Vol.106, pp.76-82, 2002
    [26]C. Cunnel, M. G. Pangalis, R. F. Martinez-Botas, ” Integration of Solid Oxide Fuel Cells into Gas Turbine Power Generation Cycles.Part2:Hybrid Model for Various Integration,” Proceedings of the Institution of Mechanical Engineers, PartA :Journal of Power and Energy vol.216, pp.129-144, 2002
    [27]K. Nishida, T. Takagi, S. Kinoshita, T. Tsuji, “Performance Evaluation of Multi-Stage SOFC And Gas Turbine Combined Systems”, ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT-2002-30109, June3-6, 2002.
    [28]P. Kuchonthara, S. Bhattacharya, A. Tsutsumi, “ Energy Recuperation in Solid Oxide Fuel Cell and Gas Turbine Combine System “ Journal of power sources, vol.117 pp.7-13, 2003.
    [29]F. Jurado, J.R. Saenz, “ Adaptive Control of a Fuel Cell-Microturbine Hybrid Power Plant “ IEEE Transactions, vol.18, pp.342-347, 2003.
    [30]林博煦,“ 燃料電池電動機車即時模擬與控制,”清華大學動力機械研究所論文, 2002。
    [31]A. F. Massardo, F. Lubelli, “ Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles(IRSOFC-GT):Part A-Cell Model and Cycle Termodynamic Analysis,“ Journal of Engineering for Gas Turbines and Power, vol.122, 2000.
    [32]U. G. Bossel, “ Final Report on SOFC Data Facts and Figures, “ Swiss Federal Office of Energy, Berne, CH. 1992.
    [33]J. W. Kim, A. V. Virkar, K. Z. Fung, K. Mehta, S. C. Singhal, “ Polarization Effects in Intermediate Temperature , Anode Supported Solid Oxide Fuel Cells “ Journal of The Electrochemical Society, vol.146, pp.66-78, 1999.
    [34]E. Achenbach, E. Riensche “ Methane/Steam Reforming Kinetics for Solid Oxide Fuel Cells,“ Journal of Power Sources, vol.52, pp.283-288, 1994.
    [35]K. Ahmed, K. Foger “ Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-based Anodes for Solid Oxide Fuel Cells,“ Catalysis Today, vol.63, pp.479-487, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE