簡易檢索 / 詳目顯示

研究生: 楊青峰
Yang, Ching-feng
論文名稱: 軟性電子的表面處理與界面反應
Surface Finish and Interfacial Reaction in Flexible Electronics
指導教授: 陳信文
Chen, Sinn-wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 175
中文關鍵詞: 軟性電子界面反應表面處理相平衡金/錫/銅界面反應錫-鋅-鉍錫-銦-鋅過冷現象溶解度
外文關鍵詞: Flexible electronics, Interfacial reaction, Surface finish, Phase equilibria, Au/Sn/Cu interfacial reaction, Sn-Zn-Bi, Sn-In-Zn, Undercooling, Dissolution rate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子產品不但持續朝向輕薄短小的目標邁進,更進一步要求在使用上符合人因工程,「軟性電子」由於能滿足這些需求而開始廣泛的研究發展。軟性基板具有輕薄、可撓性等優點,為軟性電子之重要核心。軟性電路板與傳統印刷電路板相同之處,在於其同樣會與晶片、IC載板或電子元件連接,其上將會有許多的接點。基板之表面處理與接點之界面反應對於接點性質與可靠度之評估非常的重要,因此本研究探討軟性電子之表面處理與接點之界面反應。
    Au凸塊熱壓合與銲料迴銲是軟性電子常用之連結方式。Au凸塊熱壓接合是透過熱壓的方式,將Au凸塊與經過Sn表面處理之銅箔作連結,因此Au/Sn/Cu界面反應為重要議題。本研究使用電鍍Sn之表面處理以及反應偶的方式進行探討,藉著電鍍法製備不同Sn層厚度進行Au/Sn/Cu界面反應,以瞭解Sn耗盡後之反應行為,進而得到Au/Sn/Cu界面反應之完整演變流程,並且觀察到文獻較少探討的Au24.5Sn50.2Cu25.3三元相。
    使用銲料作迴銲連接的部分,本研究選擇適用較低溫製程之低熔點Sn-Zn與Sn-In二元系統銲料進行探討。Sn-Zn銲料的部分,針對常見之商用合金Sn-8wt.%Zn-3wt.%Bi銲料作試驗,利用實驗方法獲得此三元系統於160oC下之等溫橫截面圖,並透過計算方法建立Sn-Bi-Zn三元系統之熱力學模型與參數。除此之外並研究Sn-8wt.%Zn-3wt.%Bi銲料對常用Cu、Ni及Ag片材基板以及電鍍表面處理之界面反應。反應結果顯示電鍍薄層之基板亦有類似片材基板的反應情形,會生成相同的反應相,但其成長速率有所差異。
    Sn-In銲料部分,本研究結果顯示添加Zn可以有效降低Sn- 20wt.%In銲料之過冷的現象,減緩基材溶解於銲湯的速率。在Sn-In-(Zn)/Ag界面反應部分,隨著Zn添加量的增加,可觀察到介金屬生成相由Ag-In為主之化合物轉變成Ag-Zn為主之化合物。Sn-In-(Zn)/Ni界面反應的部分,則觀察到反應生成相由Ni-Sn為主之化合物轉變成Ni-Zn為主之化合物。此部分有良好之成果並已提出新型Sn-In-Zn無鉛銲料合金之專利申請,可以提供作為適合軟性基板連接之無鉛銲料選擇。


    Flexible electronics have recently attracted very intensive studies because they are thinner, lighter, and more flexible. Similar to other electronic products, flexible electronics products comprise numerous devices and modules. The interconnection technologies of these devices and modules to the flexible substrates are crucial for manufacturing. Two metallic interconnection technologies, Au-Sn bonding and soldering, are frequently used in flexible electronic packaging. Thus, interfacial reactions in the two interconnections with different surface finishes are investigated in this study.
    Au bumps are formed on the chip side, and the Cu tracks on flexible substrates protected by the Sn surface finish are attached to the Au bumps. Consequently, a three-layer Au/Sn/Cu structure is frequently encountered in flexible electronic products. The reaction progression of the Au/Sn/Cu interfacial reactions was determined. Initially, the reaction path in the Au/Sn/Cu specimen is Au/AuSn/ AuSn2/AuSn4/Sn/Cu6Sn5/Cu3Sn/Cu. At longer reaction time, the (Cu,Au)6Sn5 phase was formed on the Au/Sn side interface as well. The Sn phase is completely consumed with even longer reaction time, the (Cu,Au)6Sn5 phases on the two sides would merge together and the reaction path then becomes Au/AuSn/AuSn2/AuSn4/(Cu,Au)6Sn5/Cu3Sn/Cu. The AuSn4 and AuSn2 phases disappeared step by step. The reaction path is then Au/Au5Sn/AuSn/(Cu,Au)6Sn5/Cu3Sn/Cu. The reaction path would continuously evolve until the specimen reaches thermodynamic equilibrium, and the final phases can be predicted from the phase diagrams.
    Low melting-point Pb-free solders, Sn-Zn and Sn-In based alloys, are selected to investigate in this study. Interfacial reactions between the Sn-8wt.%Zn-3wt.%Bi alloy and the Cu, Ag, and Ni substrates are examined. Two different kinds of substrates, bulk plate and electroplating layer, are used, and the reactions are carried out at 250 and 220oC. Although the Zn content is only 8wt.%, gamma-Cu5Zn8 and epsilon-CuZn5 phases are formed in the Sn-Zn-Bi/Cu couples. In the Sn-Zn-Bi/Ag couples, three Zn-Ag compounds are observed. The gamma-Ni5Zn21 phase is formed in the Sn-Zn-Bi/Ni couples. Similar results are found in the couples prepared with an electroplating layer: the reaction phases are the same, but the growth rates are different. Phase equilibria of Sn-Bi-Zn ternary system are determined in this study as well.
    Addition of Zn in Sn-20wt.%In alloys is effective on reducing undercooling and dissolution rate of Ag and Ni substrates in molten solders. For Sn-In-(Zn)/Ag and Sn-In-(Zn)/Ni interfacial reactions, the Zn dominating reaction products are formed when the Zn concentration is higher. A new kind of Sn-In based Pb-free solders with Zn addition is proposed in this study.

    摘要 Ⅰ Abstract Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 XII 一、前言 1 二、文獻回顧 7 2-1 相平衡 7 2-2 Sn-Au-Cu系統相平衡 11 2-2.1 Sn-Au二元相平衡 11 2-2.2 Sn-Cu二元相平衡 11 2-2.3 Au-Cu二元相平衡 11 2-2.4 Sn-Au-Cu三元相平衡 11 2-3 Sn-Bi-Zn系統相平衡 16 2-3.1 Sn-Bi二元相平衡 16 2-3.2 Sn-Zn二元相平衡 16 2-3.3 Bi-Zn二元相平衡 16 2-3.4 Sn-Bi-Zn三元相平衡 16 2-4 Sn-Cu-Zn系統相平衡 21 2-4.1 Cu-Zn二元相平衡 21 2-4.2 Sn-Cu-Zn三元相平衡 21 2-5 Sn-In-Ni-Zn系統相平衡 24 2-5.1 Sn-In二元相平衡 24 2-5.2 Sn-Ni二元相平衡 24 2-5.3 In-Ni二元相平衡 24 2-5.4 In-Zn二元相平衡 25 2-5.5 Ni-Zn二元相平衡 25 2-5.6 Sn-In-Ni三元相平衡 25 2-5.7 Sn-In-Zn三元相平衡 26 2-5.8 Sn-Ni-Zn三元相平衡 26 2-6 Sn-Ag-In-Zn系統相平衡 32 2-6.1 Sn-Ag二元相平衡 32 2-6.2 Ag-In二元相平衡 32 2-6.3 Ag-Zn二元相平衡 32 2-6.4 Sn-Ag-In三元相平衡 32 2-6.5 Sn-Ag-Zn三元相平衡 33 2-7 界面反應 38 2-8 Au/Sn/Cu系統界面反應 41 2-8.1 Sn/Au界面反應 41 2-8.2 Sn/Cu界面反應 41 2-8.3 Au/Sn/Cu界面反應 42 2-9 Sn-Zn-(Bi)/基材之界面反應 43 2-9.1 Sn-(Bi)-Zn/Cu界面反應 43 2-9.2 Sn-(Bi)-Zn/Ni界面反應 44 2-9.3 Sn-(Bi)-Zn/Ag界面反應 45 2-10 Sn-In/基材之界面反應 46 2-10.1 Sn-In/Ni界面反應 46 2-10.2 Sn-In/Ag界面反應 46 2-11 表面處理 48 三、實驗方法 50 3-1 Au/Sn/Cu之固相/固相/固相界面反應 50 3-2 Sn-Bi-Zn三元相平衡 51 3-3 Sn-Bi-Zn/基材之液相/固相界面反應 52 3-4 電鍍Ni與電鍍Cu 52 3-5 固化之過冷程度量測 53 3-6 Sn-In-(Zn)/基材之液相/固相界面反應 54 3-7 基材之溶解度量測 54 四、結果與討論 59 4-1 Au/Sn/Cu之固相/固相/固相界面反應 59 4-2 Sn-Bi-Zn三元相平衡 83 4-3 Sn-Bi-Zn/基材之液相/固相界面反應 95 4-3.1 Sn-Bi-Zn/Cu之液相/固相界面反應 95 4-3.2 Sn-Bi-Zn/Ni之液相/固相界面反應 98 4-3.3 Sn-Bi-Zn/Ag之液相/固相界面反應 99 4-4 Sn-In-(Zn)合金之固化行為 107 4-5 Sn-In-(Zn)/基材之液相/固相界面反應 119 4-5.1 Sn-In-(Zn)/Ag之液相/固相界面反應 119 4-5.2 Sn-In-(Zn)/Ni之液相/固相界面反應 143 4-6 Ag、Ni基材在Sn-In-(Zn)銲湯中之溶解行為 157 五、結論 162 六、參考文獻 164

    1. A. Nathan and B. R. Chalamala, “Special Issue on Flexible Electronics Technology, Part 1: Systems and Applications”, Proceedings of the IEEE, 93(7), pp. 1235-1238, (2005).
    2. S. M. Chang, J. H. Jou, A. Hsieh, T. H. Chen, C. Y. Chang, Y. H. Wang, and C. M. Huang, “Characteristic Study of Anisotropic Conductive Film for Chip-on-film Packaging”, Microelectronics Reliability, 41, pp. 2001-2009, (2001).
    3. A. F. J. Baggerman and M. J. Batenburg, “Reliable Au-Sn Flip-chip Bonding on Flexible Prints”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B, 18(2), pp. 257-263, (1995).
    4. X. Liu, S. Xu, G. Q. Lu, and D. A. Dillard, “Effect of Substrate Flexibility on Solder Joint Reliability”, Microelectronics Reliability, 42, pp. 1883-1891, (2002).
    5. C. W. Chang, Q. P. Lee, C. E. Ho, and C. R. Kao, “Cross-interaction between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples”, Journal of Electronic Materials, 35(2), pp. 366-371, (2006).
    6. Y. W. Yen, S. J. Wang, K. Zeng, H. W. Tseng, and C. Y. Liu, “Cross-interaction between Au/Sn and Cu/Sn Interfacial Reaction”, Journal of Electronic Materials, 38(11), pp. 2257-2263, (2009).
    7. J. Y. Park, C. S. Kang and J. P. Jung, “The Analysis of the Withdrawal Force Curve of the Wetting Curve Using 63Sn-37Pb and 96.5Sn-3.5Ag Eutectic Solders”, Journal of Electronic Materials, 28(11), pp. 1256-1262, (1999).
    8. Official Journal of the European Union, pp, L 37/19~L 37/23, 13, 2, (2003).
    9. C. R. Kao, “Phase Diagrams of Important Electronic Materials”, JOM, 54(12), pp. 44-44, (2002).
    10. West and D. R.F., Ternary Equilibrium Diagrams, Chapman and Hall, New York, (1982).
    11. F. N. Rhines, Phase Diagrams in Metallurgy, McGraw and Hall, New York, (1956).
    12. N. Saunders and A. P. Miodownik, Calphad (Calculation of Phase Diagrams): A Comprehensive Guide, p.1, Pergamon, Oxford, (1998).
    13. H. Okamoto and T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 432-433, ASM International, Materials Park, Ohio, (1990).
    14. N. Saunders and A. P. Miodownik, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 1481-1482, ASM International, Materials Park, Ohio, (1990).
    15. H. Okamoto, D. J. Chakrabarti, D. E. Laughlin, and T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 358-362, ASM International, Materials Park, Ohio, (1990).
    16. O. B. Karlsen, A. Kjekshus, and E. Rost, “Ternary Phases in the System Au-Cu-Sn”, Acta Chemica Scandinavica, 44, pp.197-198, (1990).
    17. O. B. Karlsen, A. Kjekshus, C. Romming, and E. Rost, “The Crystal Structure of the Low-temperature Au80-vCuvSn20 Phase”, Acta Chemica Scandinavica, 46, pp.1076-1082, (1992).
    18. O. B. Karlsen, A. Kjekshus, and E. Rost, “The Ternary System Au-Cu-Sn”, Chemica Scandinavica, 46, pp. 147-156, (1992).
    19. B. Peplinski and E. Zakel, “X-ray Powder Diffraction Investigation of Ternary Au-Cu-Sn Alloys”, Materials Science Forum, 166-169, pp. 443-448, (1994).
    20. Y. W. Yen, C. C. Jao, H. M. Hsiao, C. Y. Lin, and C. Lee, “Investigation of the Phase Equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au Quaternary Systems and Interfacial Reactions in Sn-Cu/Au Couples”, Journal of Electronic Materials, 36(2), pp. 147-158, (2007).
    21. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 794-796, ASM International, Materials Park, Ohio, (1990).
    22. Z. Moser, J. Dutkiewicz, W. Gasior, and J. Salawa, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 3416-3417, ASM International, Materials Park, Ohio, (1990).
    23. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 813-815, ASM International, Materials Park, Ohio, (1990).
    24. M. H. Braga, J. Vizdal, A. Kroupa, J. Ferreira, D. Soares, and L. F. Malheiros, “The Experimental Study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn Systems”, CALPHAD, 31(4), pp. 468-478, (2007).
    25. J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J. Ferreira, “Thermodynamic Assessment of the Bi-Sn-Zn System”, CALPHAD, 31(4), pp. 438-448, (2007).
    26. A. P. Miodownik, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 1508-1510, ASM International, Materials Park, Ohio, (1990).
    27. O. F. Hudson and R. M. Jones, Journal of the Institute of Metals, 14(2), pp. 98-108, (1915).
    28. M. Hansen, Zeitschrift fur metallkunde, 22, pp. 235-265, (1913).
    29. O. Bauer and M. Hansen, “The Effect of Metals on the Third of the Constitutional Brass Alloys: The Influence of Tin”, Zeitschrift fur metallkunde, 22, pp. 405-411, (1930).
    30. B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of Interfacial Reaction Products between Cu and Various Solder Alloys by Thermodynamic Calculation”, Acta Materialia, 45(5), pp. 1867-1874, (1997).
    31. C. Y. Chou and S. W. Chen, “Phase Equilibria of the Sn-Zn-Cu Ternary System”, Acta Materialia, 54(9), pp. 2393-2400, (2006).
    32. H. Okamoto, Phase Diagrams of Indium Alloys and Their Engineering Applications, C. E. T. White and H. Okamoto, Editor, pp. 255-257, ASM International, Materials Park, Ohio, (1992).
    33. P. Nash and N. Nash, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 2863-2864, ASM International, Materials Park, Ohio, (1990).
    34. M. F. Singleton and P. Nash, Phase Diagrams of Indium Alloys and Their Engineering Applications, C. E. T. White and H. Okamoto, Editor, pp. 186-190, ASM International, Materials Park, Ohio, (1992).
    35. J. Dutkiewicz and W. Zakulski, Phase Diagrams of Indium Alloys and Their Engineering Applications, C. E. T. White and H. Okamoto, Editor, pp. 307-311, ASM International, Materials Park, Ohio, (1992).
    36. P. Nash and Y. Y. Nash, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 2887-2889, ASM International, Materials Park, Ohio, (1990).
    37. W. Burkhardt and K. Schubert, “About Brassy Phases with A3-related Structure”, Zeitschrift fur metallkunde, 50(8), pp. 442-452, (1959).
    38. M. K. Bhargava and K. Schubert, Zeitschrift fur metallkunde, 67(5), pp. 318-322, (1976).
    39. S. K. Shadangi, M. Singh, S. C. Panda, and S. Bhan, Indian Journal of Technology, 24(2), pp. 105-107, (1986).
    40. C. Y. Huang and S. W. Chen, “Interfacial Reactions in In-Sn/Ni Couples and Phase Equilibria of the In-Sn-Ni System”, Journal of Electronic Materials, 31(2), pp.152-160, (2002).
    41. Y. Cui, X. J. Liu, I. Ohnuma, R. Kainuma, H. Ohtani, and K. Ishida, “Thermodynamic Calculation of the In-Sn-Zn Ternary System”, Journal of Alloys and Compounds, 320, pp. 234-241, (2001).
    42. C. Y. Chou, Ph. D. thesis, National Tsing Hua University, (2006).
    43. I Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 94-97, ASM International, Materials Park, Ohio, (1990).
    44. M. R. Baren, Phase Diagrams of Indium Alloys and Their Engineering Applications, C. E. T. White and H. Okamoto, Editor, pp. 15-19, ASM International, Materials Park, Ohio, (1992).
    45. T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., T. B. Massalski, Editor, pp. 117-118, ASM International, Materials Park, Ohio, (1990).
    46. T. M. Korhonen and J. K. Kivilahti, “Thermodynamics of Sn-In-Ag Solder System”, Journal of Electronic Materials, 27(3), pp.149-158, (1998).
    47. X. J. Liu, Y. Inohana, Y. Takaku, I. Ohnuma, R. Kainuma, K. Ishida, Z. Moser, W. Gasior, and J. Pstrus, “Experimental Determination and Thermodynamic Calculation of the Phase Equilibria and Surface Tension in the Sn-Ag-In System”, Journal of Electronic Materials, 31(11), pp.1139-1151, (2002).
    48. H. Ohtani, M. Miyashita, and K. Ishida, “Application of Calculated Phase Diagram for Material Design. Thermodynamic Study of Phase Equilibria in the Sn-Ag-Zn System”, Journal of Japan Institute of Metals, 63(6), pp. 685-694, (1999).
    49. G. P. Vassilev, E. S. Dobrev, S. K. Evtimova, and J. C. Tedenac, “Studies of the Phase Equilibria in the Ag-Sn-Zn System”, Journal of Alloys and Compounds, 327, pp. 285-291, (2001).
    50. C. C. Jao, Y. W. Yen, C. Y. Lin, and C. Lee, “Phase Equilibria of the Sn-Zn-Ag System and Interfacial Reactions in Sn-Zn/Ag Couples”, Intermetallics, 16, pp.463-469, (2008).
    51. C. L. Tsao and S. W. Chen, “Interfacial Reactions in the Liquid Diffusion Couples of Mg/Ni, Al/Ni, and Al(Ni)-Al2O3 Systems”, Journal of Materials Science, 30, pp. 5215-5222, (1995).
    52. C. R. Kao, “Microstructures Developed in Solid-liquid Reactions: Using Cu-Sn Reaction, Ni-Bi Reaction, and Cu-In Reaction as Examples”, Materials Science and Engineering A, 238(1), pp. 196-201, (1997).
    53. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, 2, pp. 89-117, (1963).
    54. S. Nakahara, R. J. McCoy, L. Buene, and J. M. Vandenberg, “Room-temperature Inter-diffusion Studies of Au-Sn Thin-film Couples”, Thin Solid Films, 84, pp. 185-196, (1981).
    55. P. G. Kim and K. N. Tu, “Morphology of Wetting Reaction of Eutectic SnPb Solder on Au Foils”, Journal of Applied Physics, 80(7), pp. 3822-3827, (1996).
    56. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, 30(5), pp. 947-952, (1982).
    57. S. Bader, W. Gust, and H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni-Sn Systems”, Acta Metallurgica et Materialia, 43(1), pp. 329-337, (1995).
    58. L. H. Su, Y. W. Yen, C. C. Lin, and S. W. Chen, “Interfacial Reactions in the Molten Sn/Cu and Molten In/Cu Couples”, Metallurgical and Materials Transactions B, 28B, pp. 927-934, (1997).
    59. A. Hayashi, C. R. Kao, and Y. A. Chang, “Reactions of Solid Copper with Pure Tin and Liquid Tin and Liquid Tin Saturated with Copper”, Scripta Materialia, 37(4), pp. 393-398, (1997).
    60. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, “Wetting and Interfacial Microstructure between Sn-Zn Binary Alloys and Cu.”, Journal of Materials Research, 13(10), pp.2859-2865, (1998).
    61. H. M. Lee, S. W. Yoon, and B. J. Lee, “Thermodynamic Prediction of Interfacial Phases at Cu/solder Joints”, Journal of Electronic Materials, 27(11), pp. 1161-1166, (1998).
    62. S. P. Yu, H. J. Lin, M. H. Hon, and M. C. Wang, “Effect of Process Parameters on the Soldering Behavior of the Sn-Zn Solder on Cu Substrate”, Journal of Materials Science, 11, pp. 461-471, (2000).
    63. Y. C. Chan, M. Y. Chiu, and T. H. Chuang, “Intermetallic Compounds Formed during the Soldering Reactions of Eutectic Sn-9Zn with Cu and Ni Substrates”, Zeitschrift fur Metallkunde, 93(2), pp. 95-98, (2002).
    64. C. W. Huang and K. L. Lin, “Wetting Properties and Interfacial Reactions in Lead-free Sn-Zn Based Solders on Cu and Cu Plated with an Electroless Ni-P/Au Layer”, Materials Transactions, 45(2), pp. 588-594, (2004).
    65. C. W. Huang and K. L. Lin, “Interfacial Reactions of Lead-free Sn-Zn Based Solders on Cu and Cu Plated Electroless Ni-P/Au Layer under Aging at 150oC”, Journal of Materials Research, 19(12), pp. 3560-3568, (2004).
    66. M, Date, K. N. Tu, T. Shoji, M. Fujiyoshi, and K. Sato, “Interfacial Reactions and Impact Reliability of Sn-Zn Solder Joints on Cu or Electroless Au/Ni(P) Bond-pads”, Journal of Materials Research, 19(10), pp. 2887-2896, (2004).
    67. M. Date, T. Shoji, M. Fujiyoshi, K. Sato, and K. N. Tu, “Ductile-to-brittle Transition in Sn-Zn Solder Joints Measured by Impact Test”, Scripta Materialia, 51, pp. 641-645, (2004).
    68. Paul Harris, “Interfacial Reaction of Tin-Zinc-Bismuth Alloys”, Soldering & Surface Mount Technology, 11(3), pp. 46-52, (1999).
    69. I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, “Interfacial Reaction and Mechanical Properties of Lead-free Sn-Zn Alloy/Cu Joints”, Materials Transaction, 43(8), pp. 1791-1801, (2002).
    70. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, “Investigation of Interfacial Reactions of Sn-Zn and Sn-Ag-Cu Lead-free Solder Alloys as Replacement for Sn-Pb Solder”, Journal of Alloys and Compounds, 400, pp. 136-144, (2005).
    71. M. Y. Chiu, S. S. Wang, and T. H. Chuang, “Intermetallic Compounds Formed during Interfacial Reactions between Liquid Sn-8Zn-3Bi Solders and Ni Substrates”, Journal of Electronic Materials, 31(5), pp. 494-499, (2002).
    72. J. M. Song, P. C. Liu, C. L. Shih, and K. L. Lin, “Role of Ag in the Formation of Interfacial Intermetallic Phases in Sn-Zn Soldering”, Journal of Electronic Materials, 34(9), pp. 1249-1254, (2005).
    73. K. L. Lin and C. J. Chen, “The Interactions between In-Sn Solders and an Electroless Ni-P Deposit upon Heat Treatment”, Journal of Materials Science: Materials in Electronics, 7, pp. 397-401, (1996).
    74. K. L. Lin and C. J. Chen, “Autocatalytic Ni-Cu-P barrier between 51In-49Sn solder and Al”, The International Journal of Microcircuits and Packaging, 20(1), pp. 46-50, (1997).
    75. T. H. Chuang, K. W. Huang, and W. H. Lin, “Mechanisms for the Intermetallic Formation during the Sn-20In-2.8Ag/Ni Soldering Reactions”, Journal of Electronic Materials, 33(4), pp. 374-381, (1998).
    76. S. K. Seo, M. G. Cho, H. M. Lee, and W. K. Choi, “Comparison of Sn2.8Ag20In and Sn10Bi10In Solders for Intermediate-step Soldering”, Journal of Electronic Materials, 35(11), pp. 1975-1981, (2006).
    77. T. H. Chuang, Y. T. Huang, and L. C. Tsao, “AgIn2/Ag2In Transformations in an In-49Sn/Ag Soldered Joint under Thermal Aging”, Journal of Electronic Materials, 30(8), pp. 945-950, (2001).
    78. M. D. Cheng, S. S. Wang, and T. H. Chuang, “Soldering Reactions between In49Sn and Ag Thick Films”, Journal of Electronic Materials, 31(3), pp. 171-177, (2000).
    79. P. T. Vianco, “An Overview of Surface Finishes and their Role in Printed Circuit Board Solderability and Solder Joint Performance”, Circuit World, 25, pp. 6-24, (1999).
    80. B. Willis, Electron. Eng., 61, (1997).
    81. S. Lamprecht, H. J. Scheier, and R. Vogel, Proc. SMTA Int., pp. 508-515, (2002).
    82. D. H. Ormerod, “Immersion Tin as a High Performance Solderable Finish for Fine Pitch PWBs”, Circuit World, 26, pp. 11-16, (2000).
    83. A. C. Spowage, C. M. Thong, and P. A. Collier, “Effect of Surface Finishes on the Thickness and Morphology of the Intermetallic Layer in Lead-free Solder Joints”, International journal of Nanoscience, 3(6), pp. 803-813, (2004).
    84. M. Arra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto, and E. Ristolainen, “Study of Immersion Silver and Tin Printed-circuit-board Surface Finishes in Lead-free Solder Applications”, Journal of Electronic Materials, 33(9), pp.977-990, (2004).
    85. D. V. Malakhov, “Thermodynamic Assessment of the Bi-Zn System”, CALPHAD, 24, pp. 1-14, (2000).
    86. S. M. Silaimani, M. Pushpavanam, and K. C. Narasimham, “Performance characteristics of electrochemically prepared tin fluoborate”, Plating & Surface Finishing, 83(10), pp. 48-53, (1996).
    87. A. He, Q. Liu, and D. G. Ivey, “Electrodeposition of tin: a simple approach”, Journal of Materials Science: Materials in Electronics, 19, pp. 553-562, (2008).
    88. J. A. Lee and G. V. Raynor, Proceedings of the Physical Society, London, 67, 737, (1954).
    89. R. J. Tarento and G. Blaise, “Studies of the first steps of thin film interdiffusion in the Al-Ni system”, Acta Metallurgica, 37(9), pp. 2305-2312, (1989).
    90. Smith et al., Penn State University, University Park, Pennsylvania, USA, ICDD Grant-in-Aid, (1973).
    91. Y. C. Huang, S. W. Chen, and K. S. Wu, “Size and Substrate Effects upon Undercooling of Pb-free Solders”, Journal of Electronic Materials, 39(1), pp. 109-114, (2010).
    92. M. G. Cho, S. K. Kang, and H. M. Lee, “Undercooling and Microhardness of Pb-free Solders on Various Under Bump Metallurgies”, Journal of Materials Research, 23(4), pp. 1147-1154, (2008).
    93. S. W. Chen and C. C. Huang, “The Relationship between the Peak Shape of a DTA Curve and the Shape of a Phase Diagram”, Chemical Engineering Science, 50(3), pp. 417-431, (1995).
    94. S. W. Chen, C. C. Lin, and C. M. Chen, “Determination of the Melting and Solidification Characteristics of Solders Using Differential Scanning Calorimetry”, Metallurgical and Materials Transaction A, 29(7), pp. 1965-1972, (1998).
    95. K.S. Kim, S.H. Huh, and K. Suganuma, “Effects of Fourth Alloying Additive on Microstructures and Tensile Properties of Sn-Ag-Cu Alloy and Joints with Cu”, Microelectronics Reliability, 43, pp. 259-267, (2002).
    96. I. E. Anderson, J. Walleser, and J. L. Harringa, “Observations of Nucleation Catalysis Effects during Solidification of SnAgCuX Solder Joints”, JOM, July, pp. 38-43, (2007)
    97. H. K. Kim and K. N. Tu, “Ripening-assisted Asymmetric Spalling of Cu-Sn Compound Spheroids in Solder Joints on Si Wafers” Applied Physics Letters, 66(18), pp.2337-2339, (1995).
    98. H. K. Kim and K. N. Tu, “Rate of Consumption of Cu in Soldering Accompanied by Ripening”, Applied Physics Letters, 67, pp. 2002-2004, (1995).
    99. A. N. Campbell and W. F. Reynolds, “The System Silver-indium- gallium”, Canadian Journal of Chemistry, 40, pp. 37-45, (1962).
    100. R. M. Screaton and R. B. Ferguson, “On the Crystal Structures of the □□and □□Phases in the System Indium-tin”, Acta Crystallographica, 7, pp. 364-365, (1954).
    101. Y. W. Yen, C. C. Jao, and C. Lee, “Effect of Cu Addition on Interfacial Reaction between Sn-9Zn Solder and Ag”, Journal of Materials Research, 21(12), pp. 2986-2990, (2006).
    102. S. W. Chen and C. H. Wang, “Interfacial Reactions of Sn-Cu/Ni Couples at 250oC”, Journal of Materials Research, 21(9), pp. 2270-2277, (2006).
    103. A. Rahn, The Basics of Soldering, John Wiely & Sons, New York, (1993).
    104. W. T. Chen, C. E. Ho and C. R. Kao, “Effect of Cu Concentration on the Interfacial Reactions between Ni and Sn-Cu Solders”, Journal of Materials Research, 17(2), pp. 263-266, (2002).
    105. C. H. Lin, S. W. Chen, and C. H. Wang, “Phase Equilibria and Solidification Properties of Sn-Cu-Ni Alloys”, Journal of Electronic Materials, 31(9), pp. 907-915, (2002).
    106. S. Y. Yang, C. E. Ho, C. W. Chang, and C. R. Kao, “Strong Zn Concentration Effect on the Soldering Reactions between Sn-based Solders and Cu”, Journal of Materials Research, 21(10), pp. 2436-2439, (2006).
    107. P. Y. Yeh, J. M. Song, and K. L. Lin, “Dissolution Behavior of Cu and Ag Substrates in Molten Solders”, Journal of Electronic Materials, 33(5), pp. 978-987, (2006).
    108. Y. W. Yen, W. T. Chou, Y. Tseng, C. Lee, and C. L. Hsu, “Investigation of Dissolution Behavior of Metallic Substrates and Intermetallic Compound in Molten Lead-free Solders”, Journal of Electronic Materials, 37(1), pp. 73-83, (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE