研究生: |
黃軍笠 Huang, Chunli |
---|---|
論文名稱: |
參渣二維系統中的自旋與電轉換之研究 Extrinsic Spin-charge Conversion Mechanisms in Disordered Two Dimensional Metals |
指導教授: |
米格爾
Cazalilla, Miguel 張奕棟 Chong, Yi-Dong |
口試委員: |
張明強
Chung, Ming-Chiang 林新 Lin, Hsin 陳正中 Chen, Jeng-Chung 唐述中 Tang, Shu-Jung |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 自旋傳輸 |
外文關鍵詞: | Magnetotransport, Boltzmann-Equation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資訊通信作為二十一世引領時代進步的科技正面臨著一個非常關鍵的挑戰:降低電子器件中的能源消耗。作為富有潛力的競爭者,石墨烯的自旋傳輸提供一個有效的解決方案,因為它們允許製備低能耗電子器件。在這份論文裡, 我會用不同的理論架構,有系統性的討論自旋在參渣石墨烯的傳輸,並且著重與自旋與電的轉換。首先,我會利用半經典的玻爾茲曼方程去討論參渣石墨烯中的自旋霍爾效應以及共振散射。然後,我會進階的利用量子玻爾茲曼方程去討論自旋在參渣石墨烯中的運動。在這過程中,我們發現了一個新的碰撞機制可以定性的改變自旋與電的轉換。我們把這碰撞機制稱為:各向異性自旋進動 (Anisotropic Spin Precession Scattering)。接著,我們利用非平衡葛林函數也發現了各向異性自旋進動可以在半導體量子井的二維電子氣裡實現。這說明了各向異性自旋進動是一個非常常見的自旋與電轉換機制。最後,我們提出一個非局域電阻實驗去測量各向異性自旋進動。我們發現它會有異常的定量行為。第一,在沒有外加磁場下,非局域電阻可以是負號的。第二,在外加磁場下,非局域電阻會隨著磁場的改變是非對稱的。我們的工作提供了理論基礎去實現自旋傳輸在資訊通信上的應用。
Spintronics is one of the most promising applications of the two-dimensional material graphene. Although pristine graphene has negligible spin-orbit coupling (SOC), both theory and experiment suggest that SOC in graphene can be enhanced by extrinsic means, such as functionalization by adatom impurities. Using the semiclassical Boltzmann transport equation, I will first discuss the spin-charge coupled dynamics and the ubiquitous spin Hall effect in adatoms functionalized graphene. Next, I will go beyond the semiclassical theory and discuss a quantum Boltzmann theory that accounts for the spin-coherent dynamics of the carriers. This theory predicts a novel “anisotropic spin precession” (ASP) scattering process in graphene, which contributes to a large current-induced spin polarization and modifies the standard spin Hall effect. More importantly, the ASP scattering couples the electric current directly to the spin density in the spin-continuity equation without any constitutive relationships. Hence, it is a form of direct mangetoelectric coupling.
Next, I will show that ASP scattering can also arise in two-dimensional electron gases lacking inversion symmetry. Therefore, ASP scattering mechanism and the associated direct magnetoelectric coupling is a universal spin transport phenomena that is independent of the microscopic details of the disorder potential. Direct mangetoelectric coupling gives rise to two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Our study provides theoretical foundations for designing future graphene-based integrated spintronic devices.
[1]I.Zˇutic ́,J.Fabian,andS.DasSarma,“Spintronics:Fundamentalsandapplica- tions,” Rev. Mod. Phys., vol. 76, pp. 323–410, Apr 2004.
[2] C. Chappert, A. Fert, and F. Nguyen Van Dau, “The emergence of spin electron- ics in data storage,” Nature Materials, vol. 6, p. 813, 2007.
[3] A. Fert, “Nobel lecture: Origin, development, and future of spintronics*,” Rev. Mod. Phys., vol. 80, pp. 1517–1530, Dec 2008.
[4] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin hall effects,” Rev. Mod. Phys., vol. 87, pp. 1213–1260, Oct 2015.
[5] J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett, vol. 83, no. 9, p. 1834, 1999.
[6] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin
hall effects,” Rev. Mod. Phys., vol. 87, pp. 1213–1260, Oct 2015.
[7] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, “Anomalous
hall effect,” Rev. Mod. Phys., vol. 82, pp. 1539–1592, May 2010.
[8] T. Jungwirth, Q. Niu, and A. H. MacDonald, “Anomalous hall effect in ferro-
magnetic semiconductors,” Phys. Rev. Lett., vol. 88, p. 207208, May 2002.
[9] J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, and A. MacDonald, “Uni-
versal intrinsic spin hall effect,” Phys. Rev. Lett., vol. 92, no. 12, p. 126603, 2004.
[10] S. Murakami, N. Nagaosa, and S.-C. Zhang, “Dissipationless quantum spin cur-
rent at room temperature,” Science, vol. 301, no. 5638, pp. 1348–1351, 2003.
[11] S. Zhang and A. Fert, “Conversion between spin and charge currents with topo-
logical insulators,” Phys. Rev. B, vol. 94, p. 184423, Nov 2016.
[12] A. Maleki, R. Raimondi, and K. Shen, “The edelstein effect in the presence of
impurity spin-orbit scattering,” arXiv:1610.08258v1, 2016.
[13] Q. Song, J. Mi, D. Zhao, T. Su, W. Yuan, W. Xing, Y. Chen, T. Wang, T. Wu, X. H.
Chen, et al., “Spin injection and inverse edelstein effect in the surface states of
topological kondo insulator smb6,” Nature Communications, vol. 7, 2016.
[14] Q. Song, H. Zhang, T. Su, W. Yuan, Y. Chen, W. Xing, J. Shi, J. Sun, and W. Han, “Observation of inverse edelstein effect in rashba-split 2deg between srtio3 and
laalo3 at room temperature,” Science Advances, vol. 3, no. 3, p. e1602312, 2017.
[15] C. Gorini, A. Maleki, K. Shen, I. Tokatly, G. Vignale, and R. Raimondi, “Theory of current-induced spin polarizations in an electron gas,” arXiv:1702.04887v1,
90
2017.
[16] S. D. Ganichev, M. Trushin, and J. Schliemann, “Spin polarisation by current,”
arXiv:1606.02043, 2016.
[17] L.Levitov,Y.Nazarov,andG.Eliashberg,“Magnetoelectriceffectsinconductors
with mirror isomer symmetry,” Zh. Eksp. Teor. Fiz, vol. 88, pp. 229–236, 1985.
[18] K. Shen, R. Raimondi, and G. Vignale, “Theory of coupled spin-charge trans- port due to spin-orbit interaction in inhomogeneous two-dimensional electron
liquids,” Phys. Rev. B, vol. 90, p. 245302, Dec 2014.
[19] J. R. Sa ́nchez, L. Vila, G. Desfonds, S. Gambarelli, J. Attane ́, J. De Teresa,
C. Mage ́n, and A. Fert, “Spin-to-charge conversion using rashba coupling at the
interface between non-magnetic materials,” Nature communications, vol. 4, 2013.
[20] J. R. Bindel, M. Pezzotta, J. Ulrich, M. Liebmann, E. Y. Sherman, and M. Morgen- stern, “Probing variations of the rashba spin-orbit coupling at the nanometre
scale,” Nature Physics, vol. 12, no. 10, pp. 920–925, 2016.
[21] P.Seneor,B.Dlubak,M.-B.Martin,A.Anane,H.Jaffres,andA.Fert,“Spintronics
with graphene,” MRS Bulletin, vol. 37, p. 1245, 2014.
[22] A. Avsar, J. Y. Tan, T. Taychatanapat, J. Balakrishnan, G. Koon, Y. Yeo, J. Lahiri,
A. Carvalho, A. Rodin, E. OFarrell, et al., “Spin-orbit proximity effect in
graphene,” Nature communications, vol. 5, 2014.
[23] J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, Baeck,
et al., “Giant spin hall effect in graphene grown by chemical vapour deposition,”
Nature communications, vol. 5, p. 4748, 2014.
[24]J.Balakrishnan,G.K.W.Koon,M.Jaiswal,A.H.C.Neto,andB.O ̈zyilmaz,
“Colossal enhancement of spin-orbit coupling in weakly hydrogenated
graphene,” Nature Physics, vol. 9, p. 284, 2013.
[25] Y. Wang, X. Cai, J. Reutt-Robey, and M. S. Fuhrer, “Neutral-current hall effects
in disordered graphene,” Phys. Rev. B, vol. 92, p. 161411, Oct 2015.
[26] A. A. Kaverzin and B. J. van Wees, “Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization,” Phys. Rev. B,
vol. 91, p. 165412, Apr 2015.
[27] C. Huang, Y. D. Chong, and M. A. Cazalilla, “Direct coupling between charge
current and spin polarization by extrinsic mechanisms in graphene,” Phys. Rev.
B, vol. 94, p. 085414, Aug 2016.
[28] M. I. Dyakonov and V. I. Perel Pis’ma Zh. Eskp. Teor. Fiz., vol. 13, p. 657, 1971.
[29] M. I. Dyakonov and V. I. Perel Phys. Lett. A, vol. 35, p. 459, 1971.
[30] S. Zhang, “Spin hall effect in the presence of spin diffusion,” Phys. Rev. Lett.,
vol. 85, p. 393, 2000.
[31] I. Zˇutic ́, J. Fabian, and S. D. Sarma, “Spintronics: Fundamentals and applica-
tions,” Rev. Mod. Phys., vol. 76, no. 2, p. 323, 2004. 91
[32] J. Sinova, D. Culcer, Q. Niu, N. Sinitsyn, T. Jungwirth, and A. MacDonald, “Uni- versal intrinsic spin hall effect,” Phys. Rev. Lett., vol. 92, no. 12, p. 126603, 2004.
[33] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. Hirashima, K. Yamada, and J. In- oue, “Intrinsic spin hall effect and orbital hall effect in 4 d and 5 d transition metals,” Phys. Rev. B, vol. 77, no. 16, p. 165117, 2008.
[34] W.-K. Tse and S. D. Sarma, “Spin hall effect in doped semiconductor structures,” Phys. Rev. Lett., vol. 96, no. 5, p. 056601, 2006.
[35] A. Ferreira, T. G. Rappoport, M. A. Cazalilla, and A. C. Neto, “Extrinsic spin hall effect induced by resonant skew scattering in graphene,” Phys. Rev. Lett., vol. 112, no. 6, p. 066601, 2014.
[36] K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, and A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
[37] A. H. Castro Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, p. 109, 2009.
[38] D.Huertas-Hernando,F.Guinea,andA.Brataas,“Spin-orbitcouplingincurved graphene, fullerenes, nanotubes, and nanotube caps,” Physical Review B, vol. 74, no. 15, p. 155426, 2006.
[39] H. Min, J. E. Hill, N. A. Sinitsyn, B. R. Sahu, L. Kleinman, and A. H. MacDonald, “Intrinsic and rashba spin-orbit interactions in graphene sheets,” Phys. Rev. B, vol. 74, no. 16, p. 165310, 2006.
[40] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, “Band- structure topologies of graphene: Spin-orbit coupling effects from first princi- ples,” Physical Review B, vol. 80, no. 23, p. 235431, 2009.
[41] J.-S.You,D.-W.Wang,andM.A.Cazalilla,“Electron-spintophononcouplingin graphene decorated with heavy adatoms,” Phys. Rev. B, vol. 92, p. 035421, 2015.
[42] C. L.Kane and E. J. Mele, “Quantum spin hall effect in graphene,” Phys. Rev.
Lett., vol. 95, p. 226801, 2005.
[43] C. Weeks, J. Hu, J. Alicea, M. Franz, and R. Wu, “Engineering a robust quantum
spin hall state in graphene via adatom deposition,” Phys. Rev. X, vol. 1, no. 2,
p. 021001, 2011.
[44] J. Hu, J. Alicea, R. Wu, and M. Franz, “Giant topological insulator gap in
graphene with 5 d adatoms,” Phys. Rev. Lett., vol. 109, no. 26, p. 266801, 2012.
[45] J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S.-J. Baeck, J.-H. Ahn, A. Ferreira, M. A. Cazalilla, and A. H. Castro Neto, “Giant spin hall effect in graphene grown by chemical vapour deposition,” Nature Communica-
tions, vol. 5, p. 4748, 2014.
[46] D. Marchenko, A. Varykhalov, M. Scholz, G. Bihlmayer, E. Rashba, A. Rybkin,
A. Shikin, and O. Rader, “Giant rashba splitting in graphene due to hybridiza- 92
tion with gold,” Nature Communications, vol. 3, p. 1232, 2012.
[47] F. Calleja, H. Ochoa, M. Garnica, S. Barja, J. J. Navarro, A. Black, M. M. Otrokov, E. V. Chulkov, A. Arnau, A. L. Vazquez de Parga, F. Guinea, and R. Miranda, “Spatial variation of a giant spin-orbit effect induces electron confinement in
graphene on pb islands,” Nature Physics, vol. 11, pp. 43–47, 01 2015.
[48] I. I. Klimovskikh, O. Vilkov, D. Y. Usachov, A. G. Rybkin, S. S. Tsirkin, M. V. Filianina, K. Bokai, E. V. Chulkov, and A. M. Shikin, “Variation of the character of spin-orbit interaction by pt intercalation underneath graphene on ir(111),”
Phys. Rev. B, vol. 92, p. 165402, 2015.
[49] T. Stauber, N. Peres, and F. Guinea, “Electronic transport in graphene: A
semiclassical approach including midgap states,” Phys. Rev. B, vol. 76, no. 20,
p. 205423, 2007.
[50] A.Pachoud,A.Ferreira,B.O ̈zyilmaz,andA.C.Neto,“Scatteringtheoryofspin-
orbit active adatoms on graphene,” Physical Review B, vol. 90, no. 3, p. 035444,
2014.
[51] L. Brey, “Spin-orbit coupling in graphene induced by adatoms with outer-shell
p orbitals,” Phys. Rev. B, vol. 92, p. 235444, Dec 2015.
[52] M. Glazov, E. Y. Sherman, and V. Dugaev, “Two-dimensional electron gas with
spin–orbit coupling disorder,” Physica E: Low-dimensional Systems and Nanostruc-
tures, vol. 42, no. 9, pp. 2157–2177, 2010.
[53] J. M. Luttinger and W. Kohn, “Quantum theory of electrical transport phenom-
ena. ii,” Phys. Rev., vol. 109, pp. 1892–1909, Mar 1958.
[54] H.-Y. Yang, C. Huang, H. Ochoa, and M. A. Cazalilla, “Extrinsic spin hall ef-
fect from anisotropic rashba spin-orbit coupling in graphene,” Physical Review B,
vol. 93, no. 8, p. 085418, 2016.
[55] H.-Y. Yang, C. Huang, H. Ochoa, and M. A. Cazalilla, “Extrinsic spin hall effect
from anisotropic rashba spin-orbit coupling in graphene,” Phys. Rev. B, vol. 93,
p. 085418, Feb 2016.
[56] D. Pesin and A. MacDonald, “Spintronics and pseudospintronics in graphene
and topological insulators,” Nature Materials, vol. 11, p. 409, 2012.
[57] H.Ochoa,A.CastroNeto,andF.Guinea,“Elliot-yafetmechanismingraphene,”
Phys. Rev. Lett., vol. 108, p. 206808, May 2012.
[58] P.Seneor,B.Dlubak,M.-B.Martin,A.Anane,H.Jaffres,andA.Fert,“Spintronics
with graphene,” MRS Bulletin, vol. 37, p. 1245, 2014.
[59] N. Tombros, C. Jozsa, M. Popinciuc, H. Jonkman, and B. van Wees, “Electronic
spin transport and spin precession in single graphene layers at room tempera-
ture,” Nature, vol. 448, p. 571, 2007.
[60] P. Zhang and M. W. Wu, “Electron spin diffusion and transport in graphene,”
Phys. Rev. B, vol. 84, p. 045304, Jul 2011. 93
[61] P. Zomer, M. Guimaraes, N. Tombros, and B. van Wees, “Long-distance spin transport in high-mobility graphene on hexagonal boron nitride,” Phys. Rev. B, vol. 86, no. 16, p. 161416, 2012.
[62] B. Dlubak, M.-B. Martin, C. Deranlot, B. Servet, S. Xavier, R. Mattana, M. Sprin- kle, C. Berger, W. A. De Heer, F. Petroff, et al., “Highly efficient spin transport in epitaxial graphene on sic,” Nat. Phys., vol. 8, no. 7, pp. 557–561, 2012.
[63] S. Roche and S. O. Valenzuela, “Graphene spintronics: puzzling controversies and challenges for spin manipulation,” Journal of Physics D: Applied Physics, vol. 47, no. 9, p. 094011, 2014.
[64] A. H. Castro Neto and F. Guinea, “Impurity-induced spin-orbit coupling in graphene,” Phys. Rev. Lett., vol. 103, p. 026804, Jul 2009.
[65] S. Irmer, T. Frank, S. Putz, M. Gmitra, D. Kochan, and J. Fabian, “Spin-orbit coupling in fluorinated graphene,” Phys. Rev. B, vol. 91, p. 115141, Mar 2015.
[66] F. Calleja, H. Ochoa, M. Garnica, S. Barja, J. J. Navarro, A. Black, M. M. Otrokov, E. V. Chulkov, A. Arnau, A. L. Vazquez de Parga, F. Guinea, and R. Miranda, “Spatial variation of a giant spin-orbit effect induces electron confinement in graphene on pb islands,” Nature Physics, vol. 11, pp. 43–47, 01 2015.
[67]J.Balakrishnan,G.K.W.Koon,M.Jaiswal,A.H.C.Neto,andB.O ̈zyilmaz, “Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene,” Nature Physics, vol. 9, p. 284, 2013.
[68] J. Balakrishnan, G. K. W. Koon, A. Avsar, Y. Ho, J. H. Lee, M. Jaiswal, S.-J. Baeck, J.-H. Ahn, A. Ferreira, M. A. Cazalilla, and A. H. Castro Neto, “Giant spin hall effect in graphene grown by chemical vapour deposition,” Nature Communica- tions, vol. 5, p. 4748, 2014.
[69] T. Kimura, Y. Otani, T. Sata, S. Takahashi, and S. Maekawa, “Room-temperature reversible spin hall effect,” Phys. Rev. Lett., no. 98, p. 156601, 2007.
[70] Q. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Na- ture Nanotech., no. 7, p. 699, 2012.
[71] X. Qian, J. Liu, L. Fu, and J. Li, “Quantum spin hall effect in two-dimensional transition metal dichalcogenides,” Science, no. 346, p. 1344, 2014.
[72] Y. Wang, X. Cai, J. Reutt-Robey, and M. S. Fuhrer, “Neutral-current hall effects in disordered graphene,” Phys. Rev. B, vol. 92, p. 161411, Oct 2015.
[73] A. A. Kaverzin and B. J. van Wees, “Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization,” Phys. Rev. B, vol. 91, p. 165412, Apr 2015.
[74] R. Ohshima, A. Sakai, Y. Ando, T. Shinjo, K. Kawahara, H. Ago, and M. Shi- raishi, “Observation of spin-charge conversion in chemical-vapor-deposition- grown single-layer graphene,” Applied Physics Letters, vol. 105, no. 16, 2014.
94
[75] J. B. S. Mendes, O. Alves Santos, L. M. Meireles, R. G. Lacerda, L. H. Vilela- Lea ̃o, F. L. A. Machado, R. L. Rodr ́ıguez-Sua ́rez, A. Azevedo, and S. M. Rezende, “Spin-current to charge-current conversion and magnetoresistance in a hy- brid structure of graphene and yttrium iron garnet,” Phys. Rev. Lett., vol. 115, p. 226601, Nov 2015.
[76] S. Dushenko, H. Ago, K. Kawahara, T. Tsuda, S. Kuwabata, T. Takenobu, T. Shinjo, Y. Ando, and M. Shiraishi, “Gate-tunable spin-charge conversion and the role of spin-orbit interaction in graphene,” Phys. Rev. Lett., vol. 116, p. 166102, Apr 2016.
[77] A. Fert and P. M. Levy, “Spin hall effect induced by resonant scattering on im- purities in metals,” Phys. Rev. Lett., vol. 106, p. 157208, Apr 2011.
[78] T. Wehling, M. Katsnelson, and A. Lichtenstein, “Adsorbates on graphene: Im- purity states and electron scattering,” Chemical Physics Letters, vol. 476, no. 4, pp. 125–134, 2009.
[79] M. I. Katsnelson and M. I. Katsnelson, Graphene: carbon in two dimensions. Cam- bridge University Press, 2012.
[80] H. Jiang, Z. Qiao, H. Liu, J. Shi, and Q. Niu, “Stabilizing topological phases in graphene via random adsorption,” Phys. Rev. Lett., vol. 109, p. 116803, Sep 2012.
[81] M. Gmitra, D. Kochan, and J. Fabian, “Spin-orbit coupling in hydrogenated
graphene,” Phys. Rev. Lett., vol. 110, p. 246602, Jun 2013.
[82] J. Garcia and T. Rapporport, “Kubo-bastin approach for the spin hall conductiv-
ity of decorated graphene,” arXiv:1602.04864, 2016.
[83] D. V. Tuan, J. Marmolejo-Tejada, X. Waintal, B. K. Nikolic, and S. Roche, “Re-
visiting spin hall effect and nonlocal resistance in chemically functionalized
graphene,” arXiv:1603.03870, 2016.
[84] M. Milletari and A. Ferreira, “Phase diagram of the spin hall effect in graphene:
Crossover to the anomalous quantum regime,” arXiv:1512.06481, 2016.
[85] M. Milletari and A. Ferreira, “Quantum diagrammatic theory of the extrinsic
spin hall effect in graphene,” arXiv:1604.03111, 2016.
[86] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Current-induced
spin polarization in strained semiconductors,” Phys. Rev. Lett., vol. 93, p. 176601,
Oct 2004.
[87] V. Sih, R. Myers, Y. Kato, W. Lau, A. Gossard, and D. Awschalom, “Spatial imag-
ing of the spin hall effect and current-induced polarization in two-dimensional
electron gases,” Nature Physics, vol. 1, no. 1, pp. 31–35, 2005.
[88] A. Dyrdał, J. Barnas ́, and V. K. Dugaev, “Current-induced spin polarization in graphene due to rashba spin-orbit interaction,” Phys. Rev. B, vol. 89, p. 075422,
Feb 2014.
[89] V. Edelstein, “Spin polarization of conduction electrons induced by electric cur-
95
rent in two-dimensional asymmetric electron systems,” Solid State Communica-
tions, vol. 73, no. 3, pp. 233 – 235, 1990.
[90] A. G. Aronov, Y. B. Lyanda-Geller, and G. E. Pikus, “Spin polarization of elec-
trons by an electric current,” Sov. Phys. JETP, vol. 73, p. 537, 1991.
[91] R. Raimondi, P. Schwab, C. Gorini, and G. Vignale, “Spin-orbit interaction in a two-dimensional electron gas: A su(2) formulation,” Annalen der Physik, vol. 524,
no. 3-4, pp. n/a–n/a, 2012.
[92] M. Guram and S. O. et. al., “Spin transport in fully hexagonal boron nitride
encapsulated graphene,” arXiv:1603.04357, 2016.
[93] W. Zibo, H. Liu, H. Jiang, and X.C.Xie, “Numerical study of the giant nonlocal
resistance in spin-orbital coupled graphene,” arXiv:1604.04993, 2016.
[94] M. Glazov, E. Sherman, and V. Dugaev, “Two-dimensional electron gas with spinorbit coupling disorder,” Physica E: Low-dimensional Systems and Nanostruc-
tures, vol. 42, no. 9, pp. 2157 – 2177, 2010.
[95] S. A. Tarasenko, “Scattering induced spin orientation and spin currents in gy-
rotropic structures,” JETP Letters, vol. 84, no. 4, pp. 199–203, 2006.
[96] M. B. Lifshits and M. I. Dyakonov, “Swapping spin currents: Interchanging spin
and flow directions,” Phys. Rev. Lett., vol. 103, p. 186601, Oct 2009.
[97] C. Huang, Y. D. Chong, G. Vignale, and M. A. Cazalilla, “Graphene electrody- namics in the presence of the extrinsic spin hall effect,” Phys. Rev. B, vol. 93,
p. 165429, Apr 2016.
[98] D. A. Abanin, A. V. Shytov, L. S. Levitov, and B. I. Halperin, “Nonlocal charge
transport mediated by spin diffusion in the spin hall effect regime,” Phys. Rev. B,
vol. 79, p. 035304, Jan 2009.
[99] C. Huang, Y. Chong, and M. A. Cazalilla in preparation.
[100] W. Han and R. K. Kawakami, “Spin relaxation in single-layer and bilayer graphene,” Phys. Rev. Lett., vol. 107, p. 047207, Jul 2011.
[101] C. Jo ́zsa, T. Maassen, M. Popinciuc, P. J. Zomer, A. Veligura, H. T. Jonkman, and B. J. van Wees, “Linear scaling between momentum and spin scattering in graphene,” Phys. Rev. B, vol. 80, p. 241403, Dec 2009.
[102] M. V. Kamalakar, C. Groenveld, A. Dankert, and S. P. Dash, “Long distance spin communication in chemical vapour deposited graphene,” Nature commu- nications, vol. 6, 2015.
[103] J. R. Sa ́nchez, L. Vila, G. Desfonds, S. Gambarelli, J. Attane ́, J. De Teresa, C. Mage ́n, and A. Fert, “Spin-to-charge conversion using rashba coupling at the interface between non-magnetic materials,” Nature communications, vol. 4, 2013.
[104] Z. Wang, C. Tang, R. Sachs, Y. Barlas, and J. Shi, “Proximity-induced ferro- magnetism in graphene revealed by the anomalous hall effect,” Phys. Rev. Lett., vol. 114, p. 016603, Jan 2015.
96
[105]
[106]
[107]
[108] [109]
[110] [111] [112]
[113] [114] [115] [116]
[117]
[118]
[119]
M. Milletar`ı and A. Ferreira, “Crossover to the anomalous quantum regime in the extrinsic spin hall effect of graphene,” Phys. Rev. B, vol. 94, p. 201402, Nov 2016.
Z. Wang, D.-K. Ki, J. Y. Khoo, D. Mauro, H. Berger, L. S. Levitov, and A. F. Mor- purgo, “Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides,” Phys. Rev. X, vol. 6, p. 041020, Oct 2016. B.Yang,M.-F.Tu,J.Kim,Y.Wu,H.Wang,J.Alicea,M.Bockrath,andJ.Shi,“Tun- able spin-orbit coupling and symmetry-protected edge states in graphene/ws,” 2D Mater., vol. 3, p. 031012, 2016.
S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two- dimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470, May 2011.
D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotrans- port in the extreme quantum limit,” Phys. Rev. Lett., vol. 48, pp. 1559–1562, May 1982.
E. Y. Sherman, “Random spinorbit coupling and spin relaxation in symmetric quantum wells,” Applied Physics Letters, vol. 82, no. 2, pp. 209–211, 2003.
S. A. Tarasenko, “Spin orientation of a two-dimensional electron gas by a high- frequency electric field,” Phys. Rev. B, vol. 73, p. 115317, Mar 2006.
C. Huang, M. Milletari, and M. Cazalilla, “Spin-charge conversion in disordered two-dimensional electron gases lacking inversion symmetry,” arXiv:1706.01316, 2017.
K. Shen, G. Vignale, and R. Raimondi, “Microscopic theory of the inverse edel- stein effect,” Phys. Rev. Lett., vol. 112, p. 096601, Mar 2014.
C. Huang, Y. Chong, and M. Cazalilla, “Spin transport in fully hexagonal boron nitride encapsulated graphene,” arXiv:1702.04955, 2017.
Y. Bychkov and E. Rashba, “Properties of a 2d electron gas with lifted spectral degeneracy,” Sov. Phys. JETP, vol. 39, p. 78, 1984.
T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura, S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin hall effect in perpendicularly spin-polarized fept/au devices,” Nature Materials, vol. 7, no. 2, pp. 125–129, 2008.
M. Ko ̈nig, S. Wiedmann, C. Bru ̈ne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin hall insulator state in hgte quantum wells,” Science, vol. 318, no. 5851, pp. 766–770, 2007.
D. Kim, S. Thomas, T. Grant, J. Botimer, Z. Fisk, and J. Xia, “Surface hall effect and nonlocal transport in smb6: Evidence for surface conduction,” Scientific Re- ports, vol. 4, p. 3150, 2013.
M. Sui, G. Chen, L. Ma, W.-Y. Shan, D. Tian, K. Watanabe, T. Taniguchi, X. Jin, W. Yao, D. Xiao, et al., “Gate-tunable topological valley transport in bilayer
97
[120] [121]
[122]
[123] [124]
[125]
graphene,” Nature Physics, vol. 11, no. 12, pp. 1027–1031, 2015.
L. Levitov and G. Falkovich, “Electron viscosity, current vortices and negative nonlocal resistance in graphene,” Nature Physics, 2016.
C.-Z. Chang, W. Zhao, D. Y. Kim, P. Wei, J. K. Jain, C. Liu, M. H. W. Chan, and J. S. Moodera, “Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous hall state,” Phys. Rev. Lett., vol. 115, p. 057206, Jul 2015.
S. A. Parameswaran, T. Grover, D. A. Abanin, D. A. Pesin, and A. Vishwanath, “Probing the chiral anomaly with nonlocal transport in three-dimensional topo- logical semimetals,” Phys. Rev. X, vol. 4, p. 031035, Sep 2014.
A. Manchon, H. Koo, J. Nitta, S. Frolov, and R. Duine, “New perspectives for rashba spin-orbit coupling,” Nature materials, vol. 14, no. 9, pp. 871–882, 2015. A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, “Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces,” Nature, vol. 539, no. 7630, pp. 509–517, 2016.
H. Wang, J. Kally, J. S. Lee, T. Liu, H. Chang, D. R. Hickey, K. A. Mkhoyan, M. Wu, A. Richardella, and N. Samarth, “Surface-state-dominated spin-charge current conversion in topological-insulator ̆ferromagnetic-insulator heterostruc- tures,” Phys. Rev. Lett., vol. 117, p. 076601, Aug 2016.
[126]E.C.T.O’Farrell,J.Y.Tan,Y.Yeo,G.K.W.Koon,B.O ̈zyilmaz,K.Watanabe,and T. Taniguchi, “Rashba interaction and local magnetic moments in a graphene-bn heterostructure intercalated with au,” Phys. Rev. Lett., vol. 117, p. 076603, Aug 2016. L.Levitov,Y.Nazarov,andG.Eliashberg,“Magnetoelectriceffectsinconductors with mirror isomer symmetry,” Zh. Eksp. Teor. Fiz, vol. 88, pp. 229–236, 1985. Avector(e.g.chargecurrent)andapseudo-vector(e.g.spinpolarization)cannot be distinguished in systems with broken inversion symmetry (e.g. gyrotropic systems). Therefore, they are allowed to couple on symmetry grounds. We thank Roberto Raimondi for bringing up this point and Ref. 31 to us.
[127] [128]
[129]
[130] [131]
[132] [133]
G. Mihajlovic ́, J. E. Pearson, M. A. Garcia, S. D. Bader, and A. Hoffmann, “Neg- ative nonlocal resistance in mesoscopic gold hall bars: Absence of the giant spin hall effect,” Phys. Rev. Lett., vol. 103, p. 166601, Oct 2009.
See Supplementary Online Materials.
G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid. Cambridge University Press, 2005.
M. Beconcini, F. Taddei, and M. Polini, “Nonlocal topological valley transport at large valley hall angles,” Phys. Rev. B, vol. 94, p. 121408, Sep 2016.
X.-P. Zhang, C. Huang, and M. A. Cazalilla, “Valley hall effect and nonlocal transport in strained graphene,” 2D Materials, vol. 4, no. 2, p. 024007, 2017.
98
[134] M. Monteverde, C. Ojeda-Aristizabal, R. Weil, K. Bennaceur, M. Ferrier, S. Gue ́ron, C. Glattli, H. Bouchiat, J. N. Fuchs, and D. L. Maslov, “Transport and elastic scattering times as probes of the nature of impurity scattering in single- layer and bilayer graphene,” Phys. Rev. Lett., vol. 104, p. 126801, Mar 2010.
[135] D. Van Tuan, J. M. Marmolejo-Tejada, X. Waintal, B. K. Nikolic ́, S. O. Valenzuela, and S. Roche, “Spin hall effect and origins of nonlocal resistance in adatom- decorated graphene,” Phys. Rev. Lett., vol. 117, p. 176602, Oct 2016.