研究生: |
張顥 Chang, Hao |
---|---|
論文名稱: |
穿透式電子顯微鏡臨場觀測鋰電池濕式晶片之電化學反應 Direct observation of chemical reaction in lithium ion battery via in-situ wet cell electron microscopy |
指導教授: |
陳福榮
Chen, Fu-Rong 曾繁根 Tseng, Fan-Gang |
口試委員: |
歐揚汎怡
Ouyang, Fan-yi 蘇紘儀 Su, Hung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 穿透式電子顯微鏡 、電化學反應 、鋰離子電池 、繞射圖型分析 、鋰離子電池晶片製程 、電子顯微鏡樣品桿製作 |
外文關鍵詞: | TEM, Electrochemical reaction, Li-ion battery, The analysis of diffraction pattern, The process of Li-ion battery wet cell, The fabrication of TEM holder |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年能源的議題逐漸被大家重視,而鋰電池有著許多的優點,例如:體積小卻擁有良好的充放電效應,在此次的研究中我們利用穿透式電子顯微鏡臨場觀測鋰電池的電化學反應,我們使用微機電的製程將鋰電池封在自製的電化學濕式晶片,在鋰電池中我們使用氧化鐵當作陽極材料和鋰鈷氧當作陰極材料,除了開發鋰電池的濕式晶片以外也開發了此晶片專用的載具將其放入電子顯微鏡中觀察其電化學反應,在這個載具中我們設計了溝槽來放入O型環來阻止電解液的溢出。在電子顯微鏡中高能量的電子束會導致鋰電池中電極以及電解液的損傷,電解液會因為高能量的電子束而被分解出水合電子、氧化氫自由及、氫自由基,為了解少此輻射損傷我們欲加入對應的離子消除劑,例如:氧氣、鹵素離子等等可以消除輻射產物的消除劑。為了能通入此離子消除劑進入鋰電池晶片,也設計了可以專用的載具並在晶片上設計孔洞使消除劑能進入鋰電池晶片,期待可以在陰陽劑的介面看到臨場的電化學反應。
In recent years, the issue of energy is getting important. Lithium-ion battery (LIB) has many figures of merit, such as, in small volume and excellent efficiency of
charging/discharging. In this paper, we show an in-situ TEM study of the chemical
reaction in LIB. We seal a miniature LIB in an electrochemical wet cell fabricated
with MEMS. The material we use in anode is Fe2O3 and LiCoO2 is used as cathode. Besides the wet cell, we also design a sample holder as shown in Figure 1.This holder allows vacuum value reach the limit in TEM system when we do the in-situ wet cell experiment . We develop our sample holder with some trench in which O-ring in inserted to minimize the leakage of electrolyte of wet cell. As it is known, the high energy of incident electron may damage electrode and electrolyte in our lithium ion battery. The electrolyte may be decomposed to form the aqueous electron (eaq), the hydroxyl radical (OH·), and the hydrogen radical (H·). To reduce this damage, we add some ion scavengers, such as, O2, Halide Ions (X− ), which can eliminate certain radical species, such as, ·OH, eaq−, in excess . We can have these reactions: eaq− +O2→2O- and OH·+ X− → HOX− . So we not only produce wet cell of lithium ion battery but flow cell that I can put ion scavengers in the wet cell. We hope that we can improve the resolution of TEM then we can see the movement of li-ion. To see the movement of li-ion when the wet cell is charging or discharging, we have to use analyze our sample with EELS.
1. Zhu Shi Wei, “光學顯微技術的新進展”, Spacetime, vol. 6, 2013, 76-81
2. J. Goodenough and K. Mizuchima, US Patent 4302518, Nov. 24, 1981
3. ferences: 1. T. Nagaura and K. Tozawa, Progress in Batteries and
Solar Cells, 9, 20(1990)
4. R. Yazami and P. Touzain, J. Power Sources, 9, 365(1983)
5. Lithium Ion Battery Technology, R. J. Brodd, ed., Progress in
Batteries & Battery Materials, Volume 14, (1995)
6. Handbook of Battery Materials, J. O, Besenhard, ed. Wiley-VCH,
New York, (1999)
7. Osamu Yamamoto, Masataka Wakihara,” Lithium Ion Batteries:
Fundamentals and Performance” , Kodansha-Wiley-VCH, Weinheim,
(1998)
8. M. Wakihara and O. Yamamoto, eds, Wiley-VCH, New York, (1998)
9. Proceedings of the 10th International Meeting on Lithium
Batteries, B. Scrosati, ed., J. Power Sources, 97-98, (2001)
10. Tarascon, J. M.; Armand, M., Issues and challenges facing
rechargeable lithium batteries. Nature 2001, 414 (6861), 359-
367.
11. Guerfi, A.; Sevigny, S.; Lagace, M.; Hovington, P.; Kinoshita,
K.; Zaghib, K., Nano-particle Li(4)Ti(5)O(12) spinel as
electrode for electrochemical generators. Journal of Power
Sources 2003, 119, 88-94
12. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.;
Huggins, R. A.; Cui, Y., High-performance lithium battery anodes
using silicon nanowires. Nature Nanotechnology 2008, 3 (1), 31-
35
13. Liang, W. T.; Yang, H.; Fan, F. F.; Liu, Y.; Liu, X. H.; Huang,
J. Y.; Zhu, T.; Zhang, S. L., Tough Germanium Nanoparticles
under Electrochemical Cycling. Acs Nano 2013, 7 (4), 3427-3433
14. Liu, X. H.; Huang, S.; Picraux, S. T.; Li, J.; Zhu, T.; Huang,
J. Y., Reversible Nanopore Formation in Ge Nanowires during
Lithiation-Delithiation Cycling: An In Situ Transmission
Electron Microscopy Study. Nano Letters 2011, 11 (9), 3991-3997.
15. Nara, H.; Fukuhara, Y.; Takai, A.; Komatsu, M.; Mukaibo, H.;
Yamauchi, Y.; Momma, T.; Kuroda, K.; Osaka, T., Cycle and rate
properties of mesoporous tin anode for lithium ion secondary
batteries. Chemistry Letters 2008, 37 (2), 142-143.
16. Liu, X. H.; Zheng, H.; Zhong, L.; Huan, S.; Karki, K.; Zhang, L.
Q.; Liu, Y.; Kushima, A.; Liang, W. T.; Wang, J. W.; Cho, J.-H.;
Epstein, E.; Dayeh, S. A.; Picraux, S. T.; Zhu, T.; Li, J.;
Sullivan, J. P.; Cumings, J.; Wang, C.; Mao, S. X.; Ye, Z. Z.;
Zhang, S.; Huang, J. Y., Anisotropic Swelling and Fracture of
Silicon Nanowires during Lithiation. Nano Letters 2011, 11 (8),
3312-3318.
17. Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L., alpha-Fe2O3
nanotubes in gas sensor and lithium-ion battery applications.
Advanced Materials 2005, 17 (5), 582-586.
18. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.
M., Nano-sized transition-metal oxides as negative-electrode
materials for lithium-ion batteries. Nature 2000, 407 (6803),
496-499.
19. Courtel, F.; Duncan, H.; Abu-Lebdeh, Y., Beyond Intercalation:
Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion
Batteries. In Nanotechnology for Lithium-Ion Batteries, Abu-
Lebdeh, Y.; Davidson, I., Eds. Springer US: 2013; pp 85-116.
20. Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B.-S.;
Hammond, P. T.; Shao-Horn, Y., High-power lithium batteries from
functionalized carbon-nanotube electrodes. Nature Nanotechnology
2010, 5 (7), 531-537.Iijima T, Toyoguchi Y, Nishimura J, Ogawa H
(1980) Button-type lithium battery using copper oxide as a
cathode. J Power Sources 5(1):99–109
21. Thackeray MM, Coetzer J (1981) A preliminary investigation of
the electrochemicalperformance of a-Fe2O3 and Fe3O4 cathodes in
high-temperature cells. Mater Res Bull16(5):591–597
22. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000)
Nano-sized transition-metal oxides as negative-electrode
materials for lithium-ion batteries. Nature 407:496–499
23. Brousse T, Crosnier O, Santos-Pen˜a J, Sandu I, Fragnaud P,
Schleich DM (2002) Recent progress in the development of tin-
based negative electrodes for Li-ion batteries. In: Kumagai N,
Komaba S (eds) Materials chemistry in lithium batteries.
Research Signpost, Kerala
24. Li H, Huang X, Chen L (1999) Anodes based on oxide materials for
lithium rechargeable batteries. Solid State Ion 123(1–4):189–197
25. Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.
M., Nano-sized transition-metal oxides as negative-electrode
materials for lithium-ion batteries.Nature 2000, 407 (6803),
496-499.
26. Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B., Nanocrystalline
and thin film germanium electrodes with high lithium capacity
and high rate capabilities.Journal of the Electrochemical
Society 2004, 151 (5), A698-A702.
27. Yi, R.; Dai, F.; Gordin, M. L.; Chen, S.; Wang, D., Micro-sized
Si-C Composite with Interconnected Nanoscale Building Blocks as
High-Performance Anodes for Practical Application in Lithium-Ion
Batteries. Advanced Energy Materials 2013,3 (3), 295-300.
28. Yi, R.; Feng, J.; Lv, D.; Gordin, M. L.; Chen, S.; Choi, D.;
Wang, D., Amorphous Zn2GeO4 nanoparticles as anodes with high
reversible capacity and long cycling life for Li-ion batteries.
Nano Energy 2013, 2 (4), 498-504.
29. Neumann, G.; Würsig, A., Lithium storage in silicon. physica
status solidi (RRL)– Rapid Research Letters 2010, 4 (1-2), A21-
A23.
30. Bruce, P. G.; Scrosati, B.; Tarascon, J.-M., Nanomaterials for
Rechargeable Lithium Batteries. Angewandte Chemie International
Edition 2008, 47 (16), 2930-2946.
31. Campana, F. P.; Buqa, H.; Novák, P.; Kötz, R.; Siegenthaler, H.,
In situ atomic force microscopy study of exfoliation phenomena
on graphite basal planes. Electrochemistry Communications 2008,
10 (10), 1590-1593.
32. Baker, R. T. K.; Harris, P. S., Controlled atmosphere electron
microscopy. Journal of Physics E: Scientific Instruments 1972, 5
(8), 793.
33. Yoshinori Fujiyoshi, M. N., Specimen-holding device for electron
microscope. U.S. Patent 5406087 1995.
34. Parsons, D. F., Structure of Wet Specimens in Electron
Microscopy. Science 1974, 186 (4162), 407-414.
35. Kaznacheyev, K.; Osanna, A.; Winn, B., Sealed cell for in-water
measurements. AIP Conference Proceedings 2000, 507 (1), 395-400.
36. Liu, K.-L.; Wu, C.-C.; Huang, Y.-J.; Peng, H.-L.; Chang, H.-Y.;
Chang, P.; Hsu, L.; Yew, T.-R., Novel microchip for in situTEM
imaging of living organisms and bio-reactions in aqueous
conditions. Lab on a Chip 2008, 8 (11), 1915-1921.
37. Huang, T.-W.; Liu, S.-Y.; Chuang, Y.-J.; Hsieh, H.-Y.; Tsai, C.-
Y.; Huang, Y.-T.; Mirsaidov, U.; Matsudaira, P.; Tseng, F.-G.;
Chang, C.-S.; Chen, F.-R., Self-aligned wet-cell for hydrated
microbiology observation in TEM. Lab on a Chip 2012, 12 (2),
340-347.
38. Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.;
Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P., High-
resolution EM of colloidal nanocrystal growth using graphene
liquid cells. Science (New York, N.Y.) 2012, 336 (6077), 61-64.
39. Zhu, G.; Jiang, Y.; Huang, W.; Zhang, H.; Lin, F.; Jin, C.,
Atomic resolution liquid-cell transmission electron microscopy
investigations of the dynamics of nanoparticles in ultrathin
liquids. Chemical Communications 2013, 49 (93),10944-10946.
40. Ito, T.; Hiziya, K., A Specimen Reaction Device for the Electron
Microscope and its Applications. Journal of Electron Microscopy
1958, 6 (1), 4-8.
41. Hideaki, M. a. N. S., Specimen heating and positioning device
for an electron microscope. Google Patents ,(1975).
42. Jones, J. S. a. P. R. S., Specimen heating holder for electron
microscopes. Google Patents,( 1991).
43. Aoyama, T., et al., Electron microscope specimen holder. Google
Patents,( 1994).
44. C. M. Wang et al., “In situ transmission electron microscopy and
spectroscopy studies of interfaces in Li ion batteries:
Challenges and opportunities,” J. Mater. Res., vol. 25, no. 8,
pp. 1541–1547, Aug. (2010).
45. Andrew J. Leenheer, John P. Sullivan, Michael J. Shaw, and C.
Thomas Harris, “A Sealed Liquid Cell for In Situ Transmission
Electron Microscopy of Controlled Electrochemical Processes”
Journal of Microelectromechanical System, VOL. 24, NO. 4, August
(2015)
46. Thackeray, M. M.; David, W. I. F.; Goodenough, J. B.,
Structural,“Characterization of the Lithiated Iron-Oxides
Lixfe3o4 and Lixfe2o3 (0-Less-Than-X-Less-Than-2)”. Materials
Research Bulletin ,(1982), 17 (6), 785-793.
47. Mxsayasu Arakawa, Jun-Ichi YAMAKI, “Cathodic decomposition of
propylene carbonate in lithium batteries ”, J. Electroanal,
Chem, 219 (1987) 273-280.
48. T.J.Woehl , P . Abellan, “Defining the radiation chemistry
during liquid cell electron microscopy to enable visualization
of nanomaterial growth and degradation dynamics”, Journal of
Microscopy, Vol. 265, Issue 2 (2017), pp. 135–147