簡易檢索 / 詳目顯示

研究生: 許智彥
Hsu, Chih-Yen
論文名稱: 人類嗜伊紅血球陽離子蛋白之肝素/硫酸乙醯肝素結合區位及胜肽功能分析
Localization and Functional characterization of Heparin/Heparan Sulfate Binding Peptides of Eosinophil Cationic Protein
指導教授: 張大慈
Chang, Dah-Tsyr
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 86
中文關鍵詞: 嗜伊紅血球陽離子蛋白肝素/硫酸乙醯肝素
外文關鍵詞: eosinophil cationic protein, heparin/heparan sulfate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 嗜伊紅血球陽離子蛋白(eosinophil cationic protein, ECP) 是由人類嗜伊紅血球釋放到細胞間質的抗病原菌顆粒蛋白。ECP與另一顆粒蛋白─嗜伊紅血球神經毒素(eosinophil derived neurotoxin, EDN) 於氣喘病人中大量表現,因此為臨床檢驗患者過敏嚴重度的生物標誌。ECP和EDN都屬於人類核醣核酸水解酶A家族(RNase A family) 的一員,並能進入特定細胞中。ECP能結合細胞表面的氨基葡聚醣,特別是硫酸乙醯肝素醣蛋白,再經胞飲作用進入支氣管上皮細胞。通常能與肝素/硫酸乙醯肝素結合的胺基酸序列為帶正電及疏水性胺基酸,本研究之目的為找出ECP與肝素/硫酸乙醯肝素的結合區位。將ECP之精胺酸(R)、色胺酸(W)和離胺酸(K)分別點突變為丙胺酸(A),細胞表面酵素連結免疫吸附分析(cell ELISA)顯示R22A, R34A, R36A, K38A, R45A, R73A, R77A突變株ECP之結合細胞表面的能力大幅下降。進一步發現ECP之主要的肝素/硫酸乙醯肝素結合區位為34RWRCK38,與一般認知的結合區位樣式XBBXXB不同。除此之外,利用不同肝素衍生物來做競爭試驗,發現肝素上2-O-sulfation位置對於與嗜伊紅血球陽離子蛋白結合較為重要。另一方面,具有ECP上的肝素結合區位的胜肽會隨著時間與濃度的增加而增加其結合上人類肺細胞株的數量。本研究直接證明ECP和肝素之間的生物功能與分子作用。


    Eosinophil cationic protein (ECP) is degranulated by eosinophils and released into the extracellular space to defense against pathogens. With another eosinophil granule protein, eosinophil derived neurotoxin (EDN), high level of ECP and EDN expression has been detected in asthma patients, and thus considered as a biomarker for diagnosis of disease severity. Both of ECP and EDN belong to human ribonuclease A (RNase A) superfamily and are able to enter several cells. Endocytosis of ECP into bronchial epithelial cells was greatly dependent on the cell surface glycosaminoglycan (GAGs), specifically heparan sulfate proteoglycans (HSPGs). The present study focuses on identification and characterization of the essential heparin/heparan sulfate (HS) binding motifs on ECP. HS binding motif has been reported to be mainly correlated with positive charge and aromatic residues, so each of the arginine (R), trytophan (W) and lysine (K) residues on ECP was specifically mutated to alanine, and the cell surface binding activity of mutant ECP was evaluated employing cell-enzyme-linked immunosorbent assay (ELISA). It was found that ECP-R22A, R34A, R36A, K38A, R45A, R73A and R77A showed significantly decreased HS binding activity, and the major heparin/HS binding motif in ECP was located at 34RWRCK38. The sequence composition and pattern of this motif were different from those of conventional heparan binding motifs (XBBXXB). In addition, de-2-O-sulfated heparin could not inhibit the cell binding ability of ECP as well as other heparin derivatives, indicating that ECP had high affinity to 2-O-sulfation of heparin. On the other hands, heparin binding peptide (ECP32-41) could bind BEAS-2B cells in a time- and concentration-dependent manner. This discovery provided the first direct evidence in biological functions and molecular interactions between ECP and heparin sulfate.

    中文摘要 ………………………………………………………………I Abstract ………………………………………………………………II Acknowledgement …………………………………………………… III Table of Contents ………………………………………………… IV List of Figures …………………………………………………… VI List of Tables …………………………………………………… VII Abbreviations …………………………………………………… VIII Chapter 1 Introduction …………………………………………… 1 Chapter 2 Materials and Methods ……………………………… 8 Chapter 3 Results ………………………………………………… 26 Chapter 4 Discussion ……………………………………………… 35 References …………………………………………………………… 42 Appendix ……………………………………………………………… 81

    1. Trivedi SG & Lloyd CM (2007) Eosinophils in the pathogenesis of allergic airways disease. Cell Mol Life Sci 64, 1269-1289.
    2. Fredens K, Dybdahl H, Dahl R & Baandrup U (1988) Extracellular deposit of the cationic proteins ECP and EPX in tissue infiltrations of eosinophils related to tissue damage. APMIS 96, 711-719.
    3. Koh GC, Shek LP, Goh DY, Van Bever H & Koh DS (2007) Eosinophil cationic protein: is it useful in asthma? A systematic review. Respir Med 101, 696-705.
    4. Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L & Trulson A (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29, 1172-1186.
    5. Gleich GJ (2000) Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105, 651-663.
    6. Durack DT, Ackerman SJ, Loegering DA & Gleich GJ (1981) Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A 78, 5165-5169.
    7. Goto T, Morioka J, Inamura H, Yano M, Kodaira K, Igarashi Y, Abe S & Kurosawa M (2007) Urinary eosinophil-derived neurotoxin concentrations in patients with atopic dermatitis: a useful clinical marker for disease activity. Allergol Int 56, 433-438.
    8. Barker RL, Loegering DA, Ten RM, Hamann KJ, Pease LR & Gleich GJ (1989) Eosinophil cationic protein cDNA. Comparison with other toxic cationic proteins and ribonucleases. J Immunol 143, 952-955.
    9. Rosenberg HF, Ackerman SJ & Tenen DG (1989) Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med 170, 163-176.
    10. Rosenberg HF, Tenen DG & Ackerman SJ (1989) Molecular cloning of the human eosinophil-derived neurotoxin: a member of the ribonuclease gene family. Proc Natl Acad Sci U S A 86, 4460-4464.
    11. Boix E & Nogues MV (2007) Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst 3, 317-335.
    12. Dyer KD & Rosenberg HF (2006) The RNase a superfamily: generation of diversity and innate host defense. Mol Divers 10, 585-597.
    13. Cho S, Beintema JJ & Zhang J (2005) The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 85, 208-220.
    14. Boix E, Leonidas DD, Nikolovski Z, Nogues MV, Cuchillo CM & Acharya KR (1999) Crystal structure of eosinophil cationic protein at 2.4 A resolution. Biochemistry 38, 16794-16801.
    15. Boix E, Nikolovski Z, Moiseyev GP, Rosenberg HF, Cuchillo CM & Nogues MV (1999) Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J Biol Chem 274, 15605-15614.
    16. Rosenberg HF, Dyer KD, Tiffany HL & Gonzalez M (1995) Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet 10, 219-223.
    17. Rosenberg HF (1998) The eosinophil ribonucleases. Cell Mol Life Sci 54, 795-803.
    18. Rosenberg HF & Dyer KD (1995) Eosinophil cationic protein and eosinophil-derived neurotoxin. Evolution of novel function in a primate ribonuclease gene family. J Biol Chem 270, 21539-21544.
    19. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ & Gleich GJ (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142, 4428-4434.
    20. Rosenberg HF (1995) Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem 270, 7876-7881.
    21. McLaren DJ, Peterson CG & Venge P (1984) Schistosoma mansoni: further studies of the interaction between schistosomula and granulocyte-derived cationic proteins in vitro. Parasitology 88 ( Pt 3), 491-503.
    22. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW & Barker RL (1990) In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144, 3166-3173.
    23. Domachowske JB, Dyer KD, Adams AG, Leto TL & Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26, 3358-3363.
    24. Domachowske JB, Dyer KD, Bonville CA & Rosenberg HF (1998) Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis 177, 1458-1464.
    25. Lee-Huang S, Huang PL, Sun Y, Kung HF, Blithe DL & Chen HC (1999) Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U S A 96, 2678-2681.
    26. Swaminathan GJ, Myszka DG, Katsamba PS, Ohnuki LE, Gleich GJ & Acharya KR (2005) Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 44, 14152-14158.
    27. Glerup S, Kloverpris S & Oxvig C (2006) The proform of the eosinophil major basic protein binds the cell surface through a site distinct from its C-type lectin ligand-binding region. J Biol Chem 281, 31509-31516.
    28. Fan TC, Chang HT, Chen IW, Wang HY & Chang MD (2007) A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 8, 1778-1795.
    29. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM & Nogues MV (2005) Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 272, 1-7.
    30. Carreras E, Boix E, Rosenberg HF, Cuchillo CM & Nogues MV (2003) Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 42, 6636-6644.
    31. Bishop JR, Schuksz M & Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030-1037.
    32. Munoz EM & Linhardt RJ (2004) Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol 24, 1549-1557.
    33. Capila I & Linhardt RJ (2002) Heparin-protein interactions. Angew Chem Int Ed Engl 41, 391-412.
    34. Cardin AD & Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9, 21-32.
    35. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.
    36. Vizioli J & Salzet M (2002) Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol Sci 23, 494-496.
    37. Lehrer RI (2004) Primate defensins. Nat Rev Microbiol 2, 727-738.
    38. Suttmann H, Retz M, Paulsen F, Harder J, Zwergel U, Kamradt J, Wullich B, Unteregger G, Stockle M & Lehmann J (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8, 5.
    39. Palffy R, Gardlik R, Behuliak M, Kadasi L, Turna J & Celec P (2009) On the physiology and pathophysiology of antimicrobial peptides. Mol Med 15, 51-59.
    40. Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80, 717-735.
    41. Marshall SH, and Arenas, G (2003) Antimicrobial peptides: A natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechnol 6, 271–284.
    42. Brown KL & Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18, 24-30.
    43. Powers JP & Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24, 1681-1691.
    44. Young JD, Peterson CG, Venge P & Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321, 613-616.
    45. Molina HA, Kierszenbaum F, Hamann KJ & Gleich GJ (1988) Toxic effects produced or mediated by human eosinophil granule components on Trypanosoma cruzi. Am J Trop Med Hyg 38, 327-334.
    46. Torrent M, Cuyas E, Carreras E, Navarro S, Lopez O, de la Maza A, Nogues MV, Reshetnyak YK & Boix E (2007) Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry 46, 720-733.
    47. Torrent M, Navarro S, Moussaoui M, Nogues MV & Boix E (2008) Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47, 3544-3555.
    48. Chan DI, Prenner EJ & Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758, 1184-1202.
    49. Wu SC, Chiang JR & Lin CW (2004) Novel cell adhesive glycosaminoglycan-binding proteins of Japanese encephalitis virus. Biomacromolecules 5, 2160-2164.
    50. Lata S, Sharma BK & Raghava GP (2007) Analysis and prediction of antibacterial peptides. BMC Bioinformatics 8, 263.
    51. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC & Chang MD (2008) Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem 283, 25468-25474.
    52. Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822, 267-287.
    53. Park SH, Oh SG, Mun JY & Han SS (2006) Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities. Colloids Surf B Biointerfaces 48, 112-118.
    54. Benatti CR, Ruysschaert JM & Lamy MT (2004) Structural characterization of diC14-amidine, a pH-sensitive cationic lipid used for transfection. Chem Phys Lipids 131, 197-204.
    55. Hooper LV, Stappenbeck TS, Hong CV & Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4, 269-273.
    56. Harder J & Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277, 46779-46784.
    57. Rudolph B, Podschun R, Sahly H, Schubert S, Schroder JM & Harder J (2006) Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother 50, 3194-3196.
    58. Peterson CG, Skoog V & Venge P (1986) Human eosinophil cationic proteins (ECP and EPX) and their suppressive effects on lymphocyte proliferation. Immunobiology 171, 1-13.
    59. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H & Seno M (2002) Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269, 307-316.
    60. Kimata H, Yoshida A, Ishioka C, Jiang Y & Mikawa H (1992) Eosinophil cationic protein inhibits immunoglobulin production and proliferation in vitro in human plasma cells. Cell Immunol 141, 422-432.
    61. Chen I-W (2006) Characterization of glycosaminoglycan-binding activies of human eosinophil ribonucleases. In National Tsing-Hus University Mster Thesis ed^eds).
    62. Fromm JR, Hileman RE, Caldwell EE, Weiler JM & Linhardt RJ (1997) Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 343, 92-100.
    63. Margalit H, Fischer N & Ben-Sasson SA (1993) Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 268, 19228-19231.
    64. Jonsson UB, Bystrom J, Stalenheim G & Venge P (2006) A (G->C) transversion in the 3' UTR of the human ECP (eosinophil cationic protein) gene correlates to the cellular content of ECP. J Leukoc Biol 79, 846-851.
    65. Rubin J, Zagai U, Blom K, Trulson A, Engstrom A & Venge P (2009) The coding ECP 434(G>C) gene polymorphism determines the cytotoxicity of ECP but has minor effects on fibroblast-mediated gel contraction and no effect on RNase activity. J Immunol 183, 445-451.
    66. Ledin J, Staatz W, Li JP, Gotte M, Selleck S, Kjellen L & Spillmann D (2004) Heparan sulfate structure in mice with genetically modified heparan sulfate production. J Biol Chem 279, 42732-42741.
    67. Turner JD & Rouser G (1970) Precise quantitative determination of human blood lipids by thin-layer and triethylaminoethylcellulose column chromatography. II. Plasma lipids. Anal Biochem 38, 437-445.
    68. Torrent M, Sanchez D, Buzon V, Nogues MV, Cladera J & Boix E (2009) Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim Biophys Acta 1788, 1116-1125.
    69. Torrent M, de la Torre BG, Nogues VM, Andreu D & Boix E (2009) Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Biochem J 421, 425-434.
    70. Stewart KM, Horton KL & Kelley SO (2008) Cell-penetrating peptides as delivery vehicles for biology and medicine. Org Biomol Chem 6, 2242-2255.
    71. Frankel AD & Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193.
    72. Green K, Brand MD & Murphy MP (2004) Prevention of mitochondrial oxidative damage as a therapeutic strategy in diabetes. Diabetes 53 Suppl 1, S110-118.
    73. Astriab-Fisher A, Sergueev D, Fisher M, Shaw BR & Juliano RL (2002) Conjugates of antisense oligonucleotides with the Tat and antennapedia cell-penetrating peptides: effects on cellular uptake, binding to target sequences, and biologic actions. Pharm Res 19, 744-754.
    74. Nori A, Jensen KD, Tijerina M, Kopeckova P & Kopecek J (2003) Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjug Chem 14, 44-50.
    75. Zhao M, Kircher MF, Josephson L & Weissleder R (2002) Differential conjugation of tat peptide to superparamagnetic nanoparticles and its effect on cellular uptake. Bioconjug Chem 13, 840-844.
    76. Torchilin VP, Rammohan R, Weissig V & Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A 98, 8786-8791.
    77. Zhu WL & Shin SY (2009) Effects of dimerization of the cell-penetrating peptide Tat analog on antimicrobial activity and mechanism of bactericidal action. J Pept Sci 15, 345-352.
    78. Mallorqui-Fernandez G, Pous J, Peracaula R, Aymami J, Maeda T, Tada H, Yamada H, Seno M, de Llorens R, Gomis-Ruth FX & Coll M (2000) Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution. J Mol Biol 300, 1297-1307.
    79. Rugeles MT, Trubey CM, Bedoya VI, Pinto LA, Oppenheim JJ, Rybak SM & Shearer GM (2003) Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481-486.
    80. Rosenberg HF & Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70, 691-698.
    81. Avdeeva SV, Chernukha MU, Shaginyan IA, Tarantul VZ & Naroditsky BS (2006) Human angiogenin lacks specific antimicrobial activity. Curr Microbiol 53, 477-478.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE