研究生: |
梁耕輔 Liang, Keng-Fu |
---|---|
論文名稱: |
新穎EGFR激酶抑制劑之設計與合成 Design and Synthesis of Novel EGFR Kinase Inhibitors |
指導教授: |
張大慈
Chang, Dah-Tsyr 謝興邦 Hsieh, Hsing-Pang |
口試委員: |
夏克山
Shia, Kak-Shan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 169 |
中文關鍵詞: | 表皮生長因子受器 、激脢抑制劑 、非小細胞肺癌 |
外文關鍵詞: | EGFR, Kinase Inhibitor, NSCLC |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表皮生長因子受器 (epidermal growth factor receptor, EGFR)是負責將生長訊息傳遞至細胞內,促使細胞生長的重要蛋白質。癌細胞快速生長、增殖均須依靠EGFR,在多種癌症中均可發現其癌細胞上EGFR有過度表現的情形。EGFR激酶抑制劑可抑制EGFR位於胞內的酪胺酸激酶,阻斷癌細胞生長訊息傳遞以治療癌症。艾瑞莎與得舒緩為目前已上市EGFR激酶抑制劑,用於治療非小細胞肺癌 (non-small cell lung cancer, NSCLC),尤其對於癌細胞具有L858R或746-750 deletion突變EGFR的病患有良好的治療效果,但常出現副作用紅疹與腹瀉。因此,我們發展對於突變種EGFRL858R抑制活性遠高於野生種的抑制劑,期望能降低使用EGFR抑制劑時正常細胞上野生種EGFR受到抑制而產生之不良藥物反應,且對於非小細胞肺癌仍具治療效果。
化合物34 (EGFRL858R IC50 = 580 nM)經循理性設計,將修飾側鏈後得到化合物37 (EGFRL858R IC50 = 205 nM),以之為先導化合物進行最佳化修飾。另外,我們建立平行合成方法,引入多種結構於化合物尾端上,依粗產物活性高低,挑選化合物進行重新合成。
相較於艾瑞莎對於EGFRL858R與EGFRWT之抑制活性間差距僅約3倍以下 (EGFRL858R IC50 = 4 nM, EGFRWT IC50 = 10 nM),重新合成所得之化合物中,化合物63a其對於EGFRL858R與EGFRWT之抑制活性間差距可達50倍以上 (EGFRL858R IC50 = 0.94 μM, EGFRWT IC50 > 50 μM);我們也成功從近一百個平行合成反應中挑選出具良好EGFRL858R抑制活性者64a (EGFRL858R IC50 = 112 nM),證明平行合成方法應用於開發新先導化合物上具有可行性。
1. Hoeijmakers, J. H. J. DNA damage, aging, and cancer. N. Engl. J. Med. 2009, 361, 1475-1485.
2. Fröhling, S.; Döhner, H. Chromosomal abnormalities in cancer. N. Engl. J. Med. 2008, 359, 722-734.
3. http://www.iarc.fr 世界衛生組織公布資料.
4. Hanahan, D.; Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 2011, 144, 646-674.
5. http://www.doh.gov.tw 衛生署統計資料.
6. Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res. 2003, 36, 462-469.
7. Bikker, J. A.; Brooijmans, N.; Wissner, A.; Mansour, T. S. Kinase domain mutations in cancer: implications for small molecule drug design strategies. J. Med. Chem. 2009, 52, 1493-1509.
8. Zuccotto, F.; Ardini, E.; Casale, E.; Angiolini, M. Through the “gatekeeper door”: exploiting the active kinase conformation. J. Med. Chem. 2009, 53, 2681-2694.
9. Liu, Y.; Gray, N. S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006, 2, 358-364.
10. Yarden, Y.; Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2001, 2, 127-137.
11. Inamura, K.; Ninomiya, H.; Ishikawa, Y.; Matsubara, O. Is the epidermal growth factor receptor status in lung cancers reflected in clinicopathologic features? Arch. Pathol. Lab. Med. 2010, 134, 66-72.
12. Gerber, D. E. EGFR inhibition in the treatment of non-small cell lung cancer. Drug Dev. Res. 2008, 69, 359-372.
13. Pines, G.; Köstler, W. J.; Yarden, Y. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS lett. 2010, 584, 2699-2706.
14. Lemmon, M. A. Ligand-induced ErbB receptor dimerization. Exp. Cell Res. 2009, 315, 638-648.
15. Oda, K.; Matsuoka, Y.; Funahashi, A.; Kitano, H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 2005, 1, 1-17
16. Capdevila, J.; Elez, E.; Macarulla, T.; Ramos, F. J.; Ruiz-Echarri, M.; Tabernero, J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat. Rev. 2009, 35, 354-363.
17. Gazdar, A. F. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009, 28, S24-S31.
18. Eck, M. J.; Yun, C.-H. Structural and mechanistic underpinnings of the differential drug sensitivity of EGFR mutations in non-small cell lung cancer. Biochim. Biophys. Acta - Proteins & Proteomics 2010, 1804, 559-566.
19. Rosell, R.; Morán, T.; Carcereny, E.; Quiroga, V.; Molina, M.; Costa, C.; Benlloch, S.; Tarón, M. Non-small-cell lung cancer harbouring mutations in the EGFR kinase domain. Clin. Transl. Oncol. 2010, 12, 75-80.
20. Shigematsu, H.; Gazdar, A. F. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int. J. Cancer 2006, 118 (2), 257-262.
21. Mukherji, D.; Spicer, J. Second-generation epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer. Expert Opin. Invest. Drugs 2009, 18, 293-301.
22. Sos, M. L.; Rode, H. B.; Heynck, S.; Peifer, M.; Fischer, F.; Klüter, S.; Pawar, V. G.; Reuter, C.; Heuckmann, J. M.; Weiss, J.; Ruddigkeit, L.; Rabiller, M.; Koker, M.; Simard, J. R.; Getlik, M.; Yuza, Y.; Chen, T.-H.; Greulich, H.; Thomas, R. K.; Rauh, D. Chemogenomic profiling provides insights into the limited activity of irreversible EGFR inhibitors in tumor cells expressing the T790M EGFR resistance mutation. Cancer Res. 2010, 70, 868-874.
23. (a) Wu, C.-H.; Coumar, M. S.; Chu, C.-Y.; Lin, W.-H.; Chen, Y.-R.; Chen, C.-T.; Shiao, H.-Y.; Rafi, S.; Wang, S.-Y.; Hsu, H.; Chen, C.-H.; Chang, C.-Y.; Chang, T.-Y.; Lien, T.-W.; Fang, M.-Y.; Yeh, K.-C.; Chen, C.-P.; Yeh, T.-K.; Hsieh, S.-H.; Hsu, J. T. A.; Liao, C.-C.; Chao, Y.-S.; Hsieh, H.-P. Design and synthesis of tetrahydropyridothieno[2,3-d]pyrimidine scaffold based epidermal growth factor receptor (EGFR) kinase inhibitors: the role of side chain chirality and michael acceptor group for maximal potency. J. Med. Chem. 2010, 53, 7316-7326; (b) 吳佳憲,博士論文,國立清華大學,2010年.
24. Robert, C.; Soria, J.-C.; Spatz, A.; Le Cesne, A.; Malka, D.; Pautier, P.; Wechsler, J.; Lhomme, C.; Escudier, B.; Boige, V. r.; Armand, J.-P.; Le Chevalier, T. Cutaneous side-effects of kinase inhibitors and blocking antibodies. Lancet Oncol. 2005, 6, 491-500.
25. Hsieh, M.-H.; Fang, Y.-F.; Chang, W.-C.; Kuo, H.-P.; Lin, S.-Y.; Liu, H.-P.; Liu, C.-L.; Chen, H.-C.; Ku, Y.-C.; Chen, Y.-T.; Chang, Y.-H.; Chen, Y.-T.; Hsi, B.-L.; Tsai, S.-F.; Huang, S.-F. Complex mutation patterns of epidermal growth factor receptor gene associated with variable responses to gefitinib treatment in patients with non-small cell lung cancer. Lung Cancer 2006, 53, 311-322.
26. Ghose, A. K.; Herbertz, T.; Pippin, D. A.; Salvino, J. M.; Mallamo, J. P. Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J. Med. Chem. 2008, 51, 5149-5171.
27. Allais, C.; Constantieux, T.; Rodriguez, J. Use of β,γ-unsaturated α-ketocarbonyls for a totally regioselective oxidative multicomponent synthesis of polyfunctionalized pyridines. Chem. Eur. J. 2009, 15, 12945-12948.
28. Montalbetti, C. A. G. N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827-10852.
29. Vicik, R.; Busemann, M.; Gelhaus, C.; Stiefl, N.; Scheiber, J.; Schmitz, W.; Schulz, F.; Mladenovic, M.; Engels, B.; Leippe, M.; Baumann, K.; Schirmeister, T. Aziridide-based inhibitors of cathepsin L: synthesis, inhibition activity, and docking studies. ChemMedChem 2006, 1, 1126-1141.
30. Chiang, C.-C.; Lin, Y.-H.; Lin, S. F.; Lai, C.-L.; Liu, C.; Wei, W.-Y.; Yang, S.-c.; Wang, R.-W.; Teng, L.-W.; Chuang, S.-H.; Chang, J.-M.; Yuan, T.-T.; Lee, Y.-S.; Chen, P.; Chi, W.-K.; Yang, J.-Y.; Huang, H.-J.; Liao, C.-B.; Huang, J.-J. Discovery of pyrrole−indoline-2-ones as Aurora kinase inhibitors with a different inhibition profile. J. Med. Chem. 2010, 53, 5929-5941.
31. Palmer, A. M.; Chiesa, V.; Schmid, A.; Munch, G.; Grobbel, B.; Zimmermann, P. J.; Brehm, C.; Buhr, W.; Simon, W.-A.; Kromer, W.; Postius, S.; Volz, J. r.; Hess, D. Tetrahydrochromenoimidazoles as potassium-competitive acid blockers (P-CABs): structure−activity relationship of their antisecretory properties and their affinity toward the hERG channel. J. Med. Chem. 2010, 53, 3645-3674.
32. Faroux-Corlay, B.; Clary, L.; Gadras, C.; Hammache, D.; Greiner, J.; Santaella, C.; Aubertin, A.-M.; Vierling, P.; Fantini, J. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity. Carbohydr. Res. 2000, 327, 223-260.
33. Lee, K.; Lee, J. H.; Boovanahalli, S. K.; Jin, Y.; Lee, M.; Jin, X.; Kim, J. H.; Hong, Y.-S.; Lee, J. J. (Aryloxyacetylamino)benzoic acid Analogues: a new class of hypoxia-inducible factor-1 inhibitors. J. Med. Chem. 2007, 50, 1675-1684.