簡易檢索 / 詳目顯示

研究生: 陳維仁
Chen, Wei-Ren
論文名稱: 光彈法結合光譜儀之應力分析
Stress analysis by integrating the photoelastic method and spectrometer
指導教授: 王偉中
Wang, Wei-Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 89
中文關鍵詞: 光彈法光彈效應光譜儀Mueller矩陣應力光學係數白光干涉
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技產業輕薄化的潮流,各種科技產品以輕、薄為主要設計概念,然而產品的輕薄化卻造成許多未曾考慮的問題一一浮現,例如薄膜電晶體液晶顯示器(Thin Film Transistor-Liquid Crystal Display, TFT-LCD)所使用的玻璃基板中之殘留應力即為一重大課題,雖然光彈法為非破壞性之應力檢測方法,但玻璃基板輕薄化將造成光彈效應漸趨微弱,使得傳統光彈法之敏感度已不敷使用。本研究將光彈法與光譜儀做結合,利用光譜儀高解析度的特點提升光彈法的檢測解析度,並針對PSM-1光彈材料製作之試片進行光彈拉伸實驗,觀察由光譜儀所得光譜分析圖的變化趨勢,嘗試經由觀察光譜分析圖隨應力的變化趨勢以建立應力判斷規則;另一方面,經由Mueller矩陣進行白光光彈理論的推導,利用PSM-1光彈材料之應力光學係數與波長的關係式以及考慮白光干涉造成的影響,求取光譜儀所檢測光強度之理論值,將理論值及實驗值相比較以探討白光光彈理論的正確性。


    一、簡介 1 二、文獻回顧 3 三、實驗原理 9 3.1 傳統光彈理論[22] 9 3.2 白光光彈理論[8, 9] 13 3.3 改良式白光光彈理論 15 3.4 彩色光彈條紋之形成與判讀[23] 19 四、實驗試片與裝置 21 4.1 實驗裝置 21 4.2 實驗試片規劃 24 4.2.1 光彈拉伸實驗 24 4.2.2 應力光學係數實驗 24 五、實驗程序 25 5.1 光彈拉伸實驗程序 25 5.2 應力光學係數實驗程序 26 六、結果與討論 27 6.1 光彈拉伸實驗 27 6.1.1 光彈條紋顏色判讀 27 6.1.2 條紋級次判讀 30 6.1.3 應力判斷規則 34 6.2 應力光學係數檢測 37 6.3 白光光彈理論探討 42 七、結論與未來展望 49 7.1 結論 49 7.2 未來展望 51 八、參考文獻 52

    [1] M. C. Huang, “The Current Status and Future Development of Taiwan TFT-LCD Industry”, New Electronic Mag., Vol. 167, pp. 140-154, 2000.
    [2] 顧鴻壽, “光電液晶平面顯示器-技術基礎及應用“, 新文京開發出版股份有限公司, 台北縣, 2005.
    [3] G. H. Kim, W. J. Kim, S. M. Kim and J. G. Son, “Analysis of Thermo-Physical and Optical Properties of a Diffuser Using PET/PC/PBT Copolymer in LCD Backlight Units”, Display, Vol. 26, Issue 1, pp. 37-43, 2005.
    [4] G. H. Kim, “A PMMA Composite as an Optical Diffuser in a Liquid Crystal Display Backlighting Unit (BLU)”, European Polymer Journal, Vol. 41, pp. 1729-1737, 2005.
    [5] A. Ajovalasit, S. Barone, G. Petrucci, “Towards RGB Photoelasticity: Full-field Automated Photoelasticity in White Light”, Experimental Mechanics, Vol. 35, pp. 193-200, 1995.
    [6] A. S. Redner, “Photoelastie Measurements by Means of Computer Assisted Spectral Contents Analysis”, Experimental Mechanics, Vol. 25, pp. 148-153, 1985.
    [7] A. S. Redner, “Photoelastic Measurements of Residual Stress for NDE”, Proc. of SPIE, 814, Photomechanics and Speckle Metrology, pp. 16-19, San Diego, CA, U.S.A., 1984.
    [8] R. J. Sanford and V. Lyengar, “The Measurement of the Complete Photoelastic Fringe Order Using a Spectral Scanner”, Proc. SEM Spring Conf. on Experimental Mechanics, pp. 160-168, Las Vegas, U. S. A., 1985.
    [9] R. J. Sanford, “On the Range of Accuracy of Spectra by Scanned White Light Photoelasticity”, Proc. SEM Conf. on Experimental
    Mechanics, pp. 901-908, New Orleans, U. S. A., 1986.
    [10] A. S. Voloshin and A. S. Redner, “Automated Measurement of Birefringence: Development and Experimental Evaluation of the Techniques”, Experimental Mechanics, Vol. 29, pp. 252-257, 1982.
    [11] H. Marwitz, W. Kizler and X. Schuster, “Improved Efficiency in Photoelastic Coatings. Fast Detection of Fringe Order Using Computer Controlled Spectrometry”, Proc. 9th Int. Conf. on Exp. Mech., Vol. 2, pp. 828-838, Copenhagen, Denmark, 1990.
    [12] L. Ivanova and G. Nechev, “A Method for Investigation of the Residual Stress in Glasses with Spectral Polariscope”, Proc. of 9th Int. Conf. on Experimental Mechanics, Vol. 2, pp. 876-883, Copenhagen, Denmark, 1990.
    [13] S. J. Haake, and E. A. Patterson, “Photoelastic Analysis of Frozen Stressed Specimens Using Spectral-content Analysis”, Experimental Mechanics, Vol. 32, pp. 266-272, 1992.
    [14] P. L. Mason, “Method and Apparatus for Measuring Retardation and Birefringence”, United States Patent, Patent No : US 5,825,492 A, Oct. 20, 1998.
    [15] B. L. Wang, C. O. Theodore and P. Kadlec, “Industrial Applications of a High-Sensitivity Linear Birefringence Measurement System”, Proc. of SPIE, Vol. 3754, pp. 197-203, Monterey, CA, U.S.A., 1999.
    [16] B. Wang, T. C. Oakberg and P. Kadlec, United States Patent, Patent No : US 6,697,157 B2, Feb. 24, 2004.
    [17] Website : www.hindsinstruments.com
    [18] J. M. Cohen, R. G. Greene, D.S. Strope and A. Kaplan, “Impact of Birefringence on Large LCDs”, SID Symposium Digest of Technical Papers, Vol. 33, pp. 329-331, 2002.
    [19] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, T. Yoshizawa, “Two-Dimensional Measurement of Birefringence Dispersion Using Spectroscopic Polarization Light”, Proc. of SPIE, Vol. 4919, pp. 176-182, Shanghai, China, 2002.
    [20] T. Wakayama, H. Kowa, Y. Otani, N. Umeda, T. Yoshizawa, “Birefringence Dispersion Measurement by Geometric Phase”, Proc. of SPIE, Vol. 4902, pp. 406-411, Stuttgart, Germany, 2002.
    [21] C. M. Carole, “Low-Level Birefringence Measurement Methods Applied to the Characterization of Optical Fibers and Interconnects”, Ph. D. Dissertation, School of Electrical and Computer Engineering, Georgia Institute of Technology, 2005.
    [22] 光彈應力分析實驗講義, 國立海洋大學機械與機電工程學系.
    [23] 趙清澄主編, “光測力學教程”, 第23頁, 高等教育出版社, 北京,
    民國84年.
    [24] Website : www.sharplesstress.com
    [25] Website : www.moritex.co.jp/home/english/index.html
    [26] Website : www.zolix.com.cn
    [27] Website : www.onset.com.tw
    [28] Website : www.jdsu.com/index.html
    [29] Website : www.hmtech.com.tw
    [30] 吳政邦, “含一近表面裂縫半無窮平板之應力分析”, 國力清華大學動力機械工程學系碩士論文, 2005.
    [31] Website : www.andruss-peskin.com/mg/vmlinks.html
    [32] ASTM Test Designation B557M, “Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products (Metric)”, Annual Book of ASTM Standards, Vol. 02.02, pp. 578-594, Philadelphia, 1984.
    [33] A. Ajovalasit, G. Petrucci, M. Scafifi, “Phase Shifting Photoelasticity in White Light”, Optics and Lasers in Engineering, Vol. 45, pp. 596-611, 2007.
    [34] Origin, Version 7.0, Original Lab Co., Massachusetts, U. S. A., 2002.
    [35] 劉柏彣, “構件在高頻諧和力作用下之數位光黏彈探討”, 國力清華大學動力機械工程學系碩士論文, 2008.
    [36] 阮孟光、郭明洁及管大椿合編, “光測力學”, 第24頁, 北京航空航天大學出版社, 北京, 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE