簡易檢索 / 詳目顯示

研究生: 劉嘯青
Liou, Siao-Cing
論文名稱: 在最小味破缺下之色Zee-Babu模型的輕子 味破缺過程
Lepton Flavor Violating Processes in the Colored Zee-Babu Model with Minimal Flavor Violation
指導教授: 張維甫
Chang, We-Fu
口試委員: 林貴林
Lin, Guey-Lin
張敬民
Cheung, Kingman
李湘楠
Li, Hsiang-Nan
倪維斗
Ni, Wei-Tou
徐百嫻
Hsu, Pai-Hsien
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 140
中文關鍵詞: 標準模型微中子質量微中子震盪色Zee-Babu模型輕子味破缺CP破缺
外文關鍵詞: colored Zee-Babu model, leptoquark, diquark, lepton flavor violating processes
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們探討色Zee-Babu模型的輕子味破缺過程,這個模型是在標準模型的框架下外加一個額外的leptoquark與一個額外的diquark。它可以給微中子質量雙圈圖的修正。在我們的工作中計算了leptoquark與diquark的衰變寬度;藉由假設diquark的湯川耦合常數在同一個數量級上以及已知diquark湯川耦合常數、leptoquark與diquark的三耦合常數、leptoquark與diquark的質量、以及微中子震盪的參數,可以導出近似的leptoquark湯耦合常數解;我們還討論了$\ell \to \ell' \gamma$分支比率、$Z \to \ell \ell'$分支比率與它的CP破缺參數、$\mu-e$轉變的分支比率。此外,我們也討論了這個模型對帶電輕子偶極矩的修正。最後在數值分析中假設同數量級的diquark湯川耦合常數以及根據最小味破缺所推論出leptoquark、右手帶電輕子、右手上夸克之間的耦合常數為零的前提下,藉由一種重新調整方法,我們預測了這個模型的以下物理量範圍:$\ell \to \ell' \gamma$分支比率、$Z \to \ell \ell'$分支比率與CP破缺參數最大值、$\mu-e$轉變的分支比率以及leptoquark衰變到帶電輕子的部分分支比率。


    e investigate the lepton flavor violating processes in the colored Zee-Babu model \cite{CZBM}, which contains an extra leptoquark and an extra diquark in the standard model framework. The model has two-loop correction to the neutrino masses. In our work, the decay widths of leptoquark and diquark are calculated; by assuming that the diquark Yukawa is democratic,
    %and minimal flavor violation is applied,
    the Yukawa couplings of leptoquark relevant to the neutrino masses are derived approximately from the diquark Yukawa, the triple coupling, masses of leptoquark and diquark, and neutirno oscillation data; the lepton flavor violating processes $\ell \to \ell' \gamma$, $Z\to \bar{\ell} \ell'$ and its CP violation parameter, and $\mu-e$ conversion are discussed in their branching ratios. Moreover, the dipole moment correction from this model to charged leptons is discussed. In the numerical study, by using a rescaling method, the predicted regions for the branching ratios of $\ell \to \ell' \gamma$, $Z\to \bar{\ell} \ell'$, and $\mu-e$ conversion, maximum of the CP violation parameters in $Z\to \ell \ell'$, as well as the partial branching ratios for the decays of leqtoquark to a charged lepton and a up-type quark are found under the assumption: democratic diquark Yukawa and minimal flavor violation which leads the couplings between leptoquark, both right-handed charged leptons and up-type quarks to zeros.

    Contents Chinese Abstract iii Abstract v Acknowledgments vii Contents ix I Brief Introduction to Neutrino 1 1 Neutrino Masses and Mixing Matrix 1 1.1 NeutrinosintheStandardModelandBeyond ................... 1 1.2 DiracandMajoranaMasses ............................. 3 1.3 theNeutrinoMixingMatrixandMasses ...................... 6 1.4 MassHierarchy,MixingAngles,andPhases .................... 8 2 Oscillation of Neutrinos 11 2.1 OscillationinVacuum ................................ 12 2.2 OscillationinMatter ................................. 17 3 Models for Non-Zero Neutrino Masses 21 3.1 Tree-LevelInducedNeutrinoMass.......................... 22 3.2 Loop-LevelInducedNeutrinoMass ......................... 26 II Lepton Flavor Violating Processes in the Colored Zee-Babu Model with Minimal Flavor Violation 31 4 Introduction: the Colored Zee-Babu Model 33 5 Neutrino Mass and Mixing in the CZBM 39 5.1 NeutrinoMassinCZBM............................... 39 5.2 ParametrizationonMixingMatrixandNeutrinoMasses . . . . . . . . . . . . . 41 6 Masses and Decays of Leptoquark and Diquark 45 7 Approximated Relations with YL, YS, and Neutrino Mass Matrix 49 7.1 LeadingApproximation................................ 50 7.2 NexttoLeadingApproximation........................... 53 7.3 BriefSummary .................................... 58 8 Flavour Violating and Conserving Processes 59 8.1 Tree-level Four-Fermi Interaction Induced by Leptoquark and Diquark . . . . . . 61 8.2 l→l′γ......................................... 69 8.3 Z→ll′ ........................................ 72 8.4 μ−econversion.................................... 78 8.5 Dipolemomentofchargedleptons.......................... 81 9 Input Parameters and Experimental Constraints 85 9.1 VariousExperimentalStatus............................. 85 9.2 ParameterSetup ................................... 86 10 Numerical Study 89 10.1 PatternsforYL .................................... 89 10.2 LFVandConservingProcesses ........................... 91 10.3 BranchingRatiosforLeptoquarkin∆→lq .................... 95 11 Conclusion 105 Appendix 109 A Decay Widths of Leptoquark and Diquark 109 B Integration and Approximation 113 ̄′ B.1 LoopfunctionsinZ→ll ..............................113 B.2 Approximationstol→l′γ,Z→ll′,andμ−econversionprocesses . . . . . . . 117 C Higgs production and Decay at the LHC 127 C.1 SignalStrengthforHiggsProductionandDecayinCZBM . . . . . . . . . . . . 134 Bibliography 137

    [1] M. Kohda, H. Sugiyama, K. Tsumura, Phys. Lett. B 718 (2013) 1436; arXiv: 1210.5622[hep- ph].
    [2] W. Pauli, Dear radioactive ladies and gentlemen, Dec 1930; Phys.Today 31N9 (1978) 27.
    [3] E. Fermi, Z.Phys. 88 (1934) 161-177.
    [4] C. L. Cowan, Jr., F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124 (1956) 103-104.
    [5] S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566.
    [6] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
    [7] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
    [8] R. Davis, Jr., D. S. Harmer, K. C. Hoffman, Phys. Rev. Lett. 20 (1968) 1205-1209.
    [9] J. N. Bahcall, R. Davis, Jr., Science 191 (1976) 264-267.
    [10] Y. Fukuda et al., [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81 (1998) 1562-1567.
    [11] Q.R. Ahmad et al., [SNO Collaboration], Phys. Rev. Lett. 89 (2002) 011301.
    [12] K.A. Olive et al. [Particle Data Group], Chin. Phys. C, 38, 090001 (2014); http://pdg.lbl.gov/ .
    [13] Carlo Giunti and Chung W. Kim, Fundamentals of Neutrino Physics and Astrophysics, ISBN: 978-0-19-850871-7.
    [14] J. Schechter and J. W. F. Valle, Phys. Rev., D25, 774, 1982.
    [15] M. Lindner, T. Ohlsson, and G. Seidl, Phys. Rev. D 65
    [16] B. Pontecorvo, Zh. Eksp. Theor. Fiz. 33, 549 (1957)he and 34, 247 (1958).
    [17] Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962).
    [18] K. Abe, [T2K Collaboration], Phys. Rev. D91 (2015) no.7, 072010.
    [19] F, Capozzi, G. L. Fogli, E. Lisi, A, Marrone, D. Montanino, and A. Palazzo, Phys. Rev. D89 (2014) 093018.
    [20] L. Wolfenstein, Phys. Rev. D 17, (1978) 2369-2374; L. Wolfenstein, Phys.Rev. D 20, (1979) 2634-2635.
    [21] S.P. Mikheev and A.Yu. Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913-917, Yad. Fiz. 42 (1985) 1441-1448.
    [22] S.P. Mikheev and A.Yu. Smirnov, Sov. Phys. Usp. 29 (1986) 1155-1157.
    [23] S.P. Mikheev and A.Yu. Smirnov, Nuovo Cim. C9 (1986) 17-26.
    [24] S.P. Mikheev and A.Yu. Smirnov, Sov. Phys. JETP 64 (1986) 4-7, Zh. Eksp. Teor. Fiz. 91 (1986) 7-13.
    [25] Q.R. Ahmad et al., [SNO Collaboration], Phys. Rev. Lett. 89 (2002) 011302.
    [26] S. Abe et al., [KamLAND Collaboration], Phys. Rev. Lett. 100 (2008) 221803.
    [27] R. Alonso, M. Dhen, and M. B. Gavela, JHEP 1301 (2013) 118.
    [28] J. Schechter and J. W. F. Valle, Phys. Rev. D 22, 2227 (1980).
    [29] M. Magg and C. Wetterich, Phys. Lett. B 94, 61 (1980).
    [30] T.-P. Cheng and F.-F. Li, Phys Rev. D 22, 2860 (1980).
    [31] A. Arhirb, R. Benbrik, M. Chabab, G. Moultaka, M. C. Peyranere, L. Rahili, J. Ramadan, Phys. Rev. D84 (2011) 095005.
    [32] Heather E. Logan and Marc-Andre Roy, Phys. REv. D 82, 115011 (2010).
    [33] R. Foot, J. Lew, X.-G. He, and G. C. Joshi, Z. Phys. C 44 (1989) 441.
    [34] A. Aada, C. Biggio, F. Bonnet, M. B. Gavela, and T. Hambye, JHEP 0712 (2007) 061. [35] S. L. Glashow and S. Weinberg, Phys. Rev. D 15 (1977) 1958.
    [36] F. Bonnet, M. Hirsch, T. Ota, and W. Winter, JHEP 1207 (2012) 153.
    [37] A. Zee, Phys. Lett. B93 (1980) 389, Erratum: Phys. Lett. B95 (1980) 461.
    [38] W.-F. Chang, I-T. Chen, and S.-C. Liou, Phys. Rev. D 83, 025017 (2011).
    [39] L. Wolfenstein, Nucl. Phys. B175 (1980) 93-96.
    [40] X.G. He, Eur. Phys. J. C34 (2004) 371-376.
    [41] A. Zee, Nucl. Phys. B264 (1986) 99-110; K. S. Babu, Phys. Lett. B203 (1988) 132-136.
    [42] K.S. Babu and C. Macesanu, Phys. Rev. D 67, 073010 (2003); D. A. Sierra and M. Hirsch, JHEP 12 2006, 052; M. Nebot, J. F. Oliver, D. Palao and A. Santamaria, Phys. Rev. D 77, 093013 (2008).
    [43] K.L. McDonald and B.H.J. Mckellar, arXiv: hep-ph/0309270.
    [44] W. Buchmüller, R. Rückl and D. Wyler, , Phys. Lett. B 191, 442 (1987); Erratum, Phys. Lett. B 448 (1999) 320.
    [45] A. Zee, Nucl. Phys. B 264,99 (1986); K.S. Babu, Phys. Lett. B 203, 132 (1988).
    [46] We-Fu Chang, John N. Ng, Jackson M. S. Wu, Phys. Rev. D 86 (2012)033003; arXiv: 1206.5047 [hep-ph];
    [47] The CMS Collaboration, CMS PAS EXO-12-041 (2014/07/10).
    [48] The CMS Collaboration, CMS PAS EXO-12-042 (2013/05/30).
    [49] The CMS Collaboration, CMS PAS EXO-13-010 (2014/07/05)
    [50] The ATLAS Collaboration, Phys. Lett. B 709 (2012) 158.
    [51] The ATLAS Collaboration, Eur. Phys. J. C (2012) 72:2151.
    [52] The ATLAS Collaboration, JHEP06(2013)033.
    [53] Francesco Romeo, ATLAS and CMS collaborations, CMS CR-2014-241
    [54] The ZEUS Collaboration, Phys. Rev. D 86(2012)012005; 1205.5179[hep-ex].
    [55] The CMS Collaboration, Phys. Rev. Lett. 116 (2016) no.7, 071801
    [56] W.-F. Chang, W.-P. Pan, and F. Xu, Phys. Rev. D 88(2013)033004; arXiv:1303.7035 [hep- ph].
    [57] A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka, M. C. Peyranere, L. Rahili, and J. Ramadan, Phys.Rev. D 84 (2011) 095005.
    [58] Howard Georgi, Lie Algebras in Particle Physics Second Edition, ISBN: 0-382-0233-9.
    [59] R. Benbrik, C.-K. Chua, Phys. Rev. D 78, 075025 (2008).
    [60] J.M. Arnold, B. Fornal, M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88, 035009 (2013).
    [61] W.-F. Chang, J.N. Ng, Phys. Rev. D 71, 053003 (2005).
    [62] Y. Kuno and Y. Okada, Rev. Mod. Phys. 73, 151 (2001).
    [63] J. Bernabeu and A. Santamaria, Phys. Rev. Lett. 57, 1514 (1986).
    [64] N. Rius and J. W. F. Valle, Phys. Lett. B 246, 249 (1990).
    [65] J. I. Illana and T. Remann, Phys. Rev. D 63, 053004 (2001).
    [66] T. P. Cheng and L. F. Li, Gaugen Theory of Elementary Particle Physics, ISBN: 978-7- 03-021883-4.
    [67] J. Adam et. al., [MEG Collaboration], Phys. Rev. Lett. 110, 201801 (2013).
    [68] G.W. Bennett et al. [Muon (g-2) Collaboration], Phys. Rev. D 73, 072003 (2006).
    [69] G. F. Giudice, P. Paradisi, and M. Passera, J. High Energy Phys. 11 (2012) 113.
    [70] B. Aubert et. al. [BaBar Collaboration], Phys. Rev. Lett. 104, 021802 (2010).
    [71] G. Aad et al., the ATLAS Collaboration, Phys. Rev. D 90, 072010 (2014).
    [72] P.A.R. Ade et al. [Planck collaboration], arXiv: 1502.01589v2 [astro-ph.CO].
    [73] A. Gando, et. al. [KanLAND-Zen Collaboration], arXiv:1605.02889[hep-ex].
    [74] M. Carpentier and S. Davidson, Eur. Phys. J. C 70 (2010) 1071-1090; arXiv: 1008.0280v2 [hep-ph].
    [75] M. Bona, et al. [UTfit Collaboration], JHEP03 (2008) 049.
    [76] M. Bicer et al. [TLEP Design Study Working Group Collaboration], JHEP 1401 (2014) 164; arXiv: 1308.6176 [hep-ex].
    [77] comet.kek.jp/
    [78] mu2e.fnal.gov/public/index.shtml
    [79] Mu2e Collaborations (E. Craig Dukes for the collaboration), Nucl. Phys. Proc. Suppl. 218 (2011) 32-37.
    [80] R. J. Barlow, Nucl. Phys. Proc. Suppl. 218 (2011) 44-49.
    [81] Yong Zhou, arXiv:hep-ph/05082256v6 (2010).
    [82] G. Y. Chen, H. R. Dong, and J. P. Ma, Phys. Rev. D 78, 054022 (2008).
    [83] C.-S. Chen, C.-Q. Geng, D. Huang, L.-H. Tsai, arXiv: 1301:4694[hep-ph].
    [84] V. Barger, M. Ishida, and W.-Y. Keung, Phys. Rev. Lett. 108, 261801 (2012).
    [85] Abdelhak Djouadi, Phys.Rept. 457 (2008) 1-216.
    [86] W.-F. Chang, John N. Ng, and Jackson M. S. Wu, Phys. REv. D 86 033003 (2012).
    [87] Ch.-S. Chen, C.-Q. Geng, D. Huang, and L.-H. Tsai, Phys. Rev. D 87, 075019 (2013).
    [88] The CMS Collaboration, Eur. Phys. J. C (2014) 74:3076.
    [89] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90, 112015 (2014).
    [90] CMS Collaboration, Phys. Lett. B726 (2013) 587
    [91] ATLAS Collaboration, Phys. Lett. B732 (2014) 8-27.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE