簡易檢索 / 詳目顯示

研究生: 陳孝恩
Chen, Hsiao-En
論文名稱: 應用低於耐奎氏速率取樣技術之頻譜感測系統
A Spectrum Sensing System Based on Sub-Nyquist Rate Sampling
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員: 蔡佩芸
Tsai, Pei-Yun
楊家驤
Yang, Chia-Hsiang
吳仁銘
Wu, Jen-Ming
馬席彬
Ma, Hsi-Pin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 頻譜感測壓縮感測
外文關鍵詞: Spectrum sensing, Compressed sensing
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,感知無線電被視為可解決頻譜使用效率不高和日漸增加的頻譜需求的方法。在感知無線電中,頻譜感測是一項非常重要的議題。如果觀察的頻譜範圍很廣,即稱為廣域頻譜感測。然而,廣域的頻譜感測有其技術上的困難。隨著壓縮感測技術的發展,我們取樣可以低於耐奎氏速率。

    在本篇論文中,我們提出的架構運用MWC (Modulated Wideband Converter) 做低於耐奎氏速率的取樣。取樣之後,再利用壓縮感測的還原技術,找出support,support為有可能被使用的頻帶。之後再用Psudoinverse運算還原訊號。然而我們最主要的目的是做頻譜感測,所以我們並不需要將訊號還原至耐奎氏速率,用低速率的訊號去做頻譜感測,這樣可以降低運算複雜度。此外,因為頻域的原點等於時域序列的總和,所以我們就用總和 (Summation)運算去取代快速傅立葉轉換 (Fast Fourier Transform)處理器。 因此,我們所提出之頻譜感測系統的運算複雜度比原本使用耐奎氏速率取樣的適應性多訊窗頻譜(Adaptive Multi-taper Spectrum Detector)偵測器降低了93.3%。


    In recent years, cognitive radio, which has the ability of spectrum sensing and self-adjustment
    transmission power and modulation, is regarded as an effective solution to the problem of ineffective
    spectrum utilization. Spectrum sensing is one of the most important issue in cognitive
    radio, which needs to find out where the spectrum hole is. The cognitive radio has to detect
    spectrum holes in a wide frequency range that can be viewed as wideband spectrum sensing.
    However, wideband spectrum sensing has its technical challenges. Fortunately, with the development
    of compressed sensing, it’s possible to acquire a signal at a sub-Nyquist rate. In
    other words, we can use lower rate ADC instead the higher rate one.
    In this thesis, the proposed architecture uses modulated wideband converter for sub-Nyquist
    rate sampling. It samples with more than one branch by low rate ADCs, and then the compressive
    sensing recovery algorithm recovers support which is implied where the probable
    active band is. Although the modulated wideband converter needs more hardware components,
    its rate is far below the Nyquist rate. It implies that is cheaper than the Nyquist rate
    components, and it is easy to implement. However, the reconstructive procedure is computationally
    complex in conventional modulated wideband converter, because it interpolates the
    reconstructive signal to Nyquist rate. In order to reduce computational complexity, the signal
    is not reconstruct completely. Nevertheless, the main purpose of the proposed architecture is
    to do spectrum sensing, the low rate signal is included the narrow band information. Since
    the original point in frequency domain is the summation of sequence in time domain, the
    fast Fourier transform processor is replaced by summation procedure. The spectrum sensing
    system can reduce computational loads by 93:3% compared to adaptive multitaper spectral
    detector with Nyquist rate sampling.

    Abstract i 1 Introduction 1 1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Cognitive Radio and Spectrum Sensing . . . . . . . . . . . . . . . . 1 1.1.2 Sub-Nyquist Rate Sampling . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Sub-Nyquist Rate Sampling 7 2.1 Random Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Modulated Wideband Converter . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 Proposed Architecture Design 17 3.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Parameter of Modulated Wideband Converter Determination . . . . . 18 3.1.2 Reconstructive Procedure . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Adaptive Multitaper Spectrum Detector . . . . . . . . . . . . . . . . 25 3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Hardware Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 Computational Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4 Logic Design 35 4.1 Word-length Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 General Component Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Complex Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Inner Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2.3 Delay Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Expanded Branches Module . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Implementation of Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . 45 4.4.1 Process of Orthogonal Matching Pursuit . . . . . . . . . . . . . . . . 47 4.5 Pseudoinverse Calculation Procedure . . . . . . . . . . . . . . . . . . . . . . 50 4.5.1 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Conclusions and Future Works 55 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    [1] FCC, “Spectrum Policy Task Force,” ET Docket, no. 02-135, Tech. Rep., Nov. 2002.
    [2] J. Mitola, “Software Radios: Survey, Critical Evaluation and Future Directions,” IEEE
    Aerospace and Electronic Systems Magazine, vol. 8, no. 4, pp. 25 –36, Apr. 1993.
    [3] J. Mitola and G. Q. Maguire, “Cognitive Radio: Making Software Radios More Personal,”
    IEEE Personal Communications, vol. 6, no. 4, pp. 13 –18, Aug. 1999.
    [4] J. Mitola, “Cognitive Radio for Flexible Mobile Multimedia Communications,” in 1999
    IEEE International Workshop on Mobile Multimedia Communications, 1999, pp. 3 –10.
    [5] ——, “Software Radio Architecture: A Mathematical Perspective,” IEEE Journal on
    Selected Areas in Communications, vol. 17, no. 4, pp. 514 –538, Apr. 1999.
    [6] D. Cabric and R. W. Brodersen, “Physical Layer Design Issues Unique to Cognitive
    Radio Systems,” in 2005 IEEE 16th International Symposium on Personal, Indoor and
    Mobile Radio Communications, vol. 2, Sep. 2005, pp. 759 –763.
    [7] A. Molisch, L. Greenstein, and M. Shafi, “Propagation Issues for Cognitive Radio,”
    Proceedings of the IEEE, vol. 97, no. 5, pp. 787 –804, May 2009.
    [8] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum Sensing for Cognitive Radio,”
    Proceedings of the IEEE, vol. 97, no. 5, pp. 849 –877, May 2009.
    [9] J. Ma, G. Li, and B. H. Juang, “Signal Processing in Cognitive Radio,” Proceedings of
    the IEEE, vol. 97, no. 5, pp. 805 –823, May 2009.
    [10] F. F. Digham, M. S. Alouini, and M. K. Simon, “On The Energy Detection of Unknown
    Signals over Fading Channels,” in 2003 IEEE International Conference on Communications,
    vol. 5, May 2003, pp. 3575 – 3579.
    [11] A. Sonnenschein and P. M. Fishman, “Radiometric Detection of Spread-Spectrum Signals
    in Noise of Uncertain Power,” IEEE Transactions on Aerospace and Electronic
    Systems, vol. 28, no. 3, pp. 654 –660, Jul. 1992.
    [12] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectrum Sensing Measurements of
    Pilot, Energy, and Collaborative Detection,” in 2006 IEEE Military Communications
    Conference, Oct. 2006, pp. 1 –7.
    [13] T. Ikuma and M. Naraghi-Pour, “A Comparison of Three Classes of Spectrum Sensing
    Techniques,” in 2008 IEEE Global Telecommunications Conference, Dec. 2008, pp. 1
    –5.
    [14] Y. Zeng and Y. C. Liang, “Covariance Based Signal Detections for Cognitive Radio,”
    in 2007 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access
    Networks, Apr. 2007, pp. 202 –207.
    [15] T. Ikuma and M. Naraghi-Pour, “Autocorrelation-Based Spectrum Sensing Algorithms
    for Cognitive Radios,” in 2008 Proceedings of 17th International Conference on Computer
    Communications and Networks, Aug. 2008, pp. 1 –6.
    [16] S. Chaudhari, J. Lunden, and V. Koivunen, “Collaborative Autocorrelation-Based Spectrum
    Sensing of OFDM Signals in Cognitive Radios,” in 2008 Annual Conference on
    Information Sciences and Systems, Mar. 2008, pp. 191 –196.
    [17] S. Chaudhari, V. Koivunen, and H. V. Poor, “Distributed Autocorrelation-Based Sequential
    Detection of OFDM Signals in Cognitive Radios,” in 2008 International Conference
    on Cognitive Radio Oriented Wireless Networks and Communications, May 2008, pp. 1
    –6.
    [18] T. Yucek and H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive Radio
    Applications,” IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp. 116 –130,
    2009.
    [19] M. Mishali and Y. Eldar, “Xampling: Analog Data Compression,” in 2010 Data Compression
    Conference (DCC), Mar. 2010, pp. 366 –375.
    [20] T. S. Chiu, “An Optimal Multiband Spectral Detector in Cognitive Radios,” Master’s
    thesis, Dept. Electron. Eng., National Tsing Hua University, Hsinchu, Taiwan, Oct. 2010.
    [21] E. Candes and M. Wakin, “An Introduction to Compressive Sampling,” IEEE Signal
    Processing Magazine, vol. 25, no. 2, pp. 21 –30, Mar. 2008.
    [22] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk, “Beyond
    Nyquist: Efficient Sampling of Sparse Bandlimited Signals,” IEEE Transactions on Information
    Theory, vol. 56, no. 1, pp. 520 –544, Jan. 2010.
    [23] M. Mishali and Y. C. Eldar, “From Theory to Practice: Sub-Nyquist Sampling of Sparse
    Wideband Analog Signals,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,
    no. 2, pp. 375 –391, Apr. 2010.
    [24] M. Mishali, Y. C. Eldar, and A. J. Elron, “Xampling: Signal Acquisition and Processing
    in Union of Subspaces,” IEEE Transactions on Signal Processing, vol. 59, no. 10, pp.
    4719 –4734, Oct. 2011.
    [25] D. Thomson, “Spectrum Estimation and Harmonic Analysis,” Proceedings of the IEEE,
    vol. 70, no. 9, pp. 1055 – 1096, Sep. 1982.
    [26] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications. London,
    U. K. : Cambridge University Press, 1993.
    [27] “Digi-Key.” [Online]. Available: http://www.digikey.com/?curr=USD
    [28] W. Li and L. Wanhammar, “A Pipeline FFT Processor,” in 1999 IEEE Workshop on
    Signal Processing Systems, 1999, pp. 654 –662.
    [29] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications.
    John Wiley and Sons (Asia), 2007.
    [30] K. H. Lin, C. H. Lin, R. H. Chang, C. L. Huang, and F. C. Chen, “Iterative QR Decomposition
    Architecture Using The Modified Gram-Schmidt Algorithm,” in 2009 IEEE
    International Symposium on Circuits and Systems, May 2009, pp. 1409 –1412.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE