簡易檢索 / 詳目顯示

研究生: 蔡毓書
論文名稱: 摻雜釤之鈦酸鉍鐵電薄膜電性研究
指導教授: 甘炯耀
J. Y. Gan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
中文關鍵詞: 摻雜釤薄膜溶凝膠法鈦酸鉍鐵電電容
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bi4Ti3O12-簡稱為BIT為主的材料,在鐵電的特性方面,因為有優越的抗疲勞特性,所以近來廣泛被大家所研究。這是因為鐵電記憶體在實際的運用上,若無法克服經多次讀寫所產生的劣化,將會大大的減低實用性,因而BIT為主的材料在逐漸被大家所研究。
    本論文以溶凝膠法旋鍍製作Bi4-xSmxTi3O12的BSmT薄膜,期望在Sm的摻雜後會有比Bi4Ti3O12更好的表現,因此選用了Sm摻雜量在x=0、0.25、0.5、0.75、1,在這幾成分下的變化情形。由於在BIT中有強烈的非等向性,隨著指向的不同所表現的電性也有所不同,應此我們選用Bi4-xSmxTi3O12 在x=0.75下研究其在不同混合指向時的變化。最後我們在Bi4-xSmxTi3O12 在x=0.75下探討在不同膜厚時所發生的電性表現。

    在不同的Sm摻雜研究上,我們發現在化學計量比為Bi3.25Sm0.75Ti3O12時,在殘留極化量和抗疲勞性質方面有一最好的表現。且在這成分下所表現的非等向性和BIT與BLT類似,指向上隨C軸指向的增加時,殘留極化量和抗疲勞特性會有下降的發生。在Bi3.25Sm0.75Ti3O12成分下,膜厚在約130nm以上時漏電流以電子熱發散為主,隨膜厚的增加會有漏電流減少的發生。在我們製程下,膜厚約為50nm以下會有電極之間直接導通以歐姆電流型式發生。在膜厚到達約180nm以上時,電製曲線不但有較好的表現,抗疲勞的特性也會有些微的改善。

    Bi4-xSmxTi3O12 在x=0.75時,膜厚約180nm以上會有殘留極化量高達13μC/cm2,且經過4×1010極化反轉後,仍然會有很好的抗疲勞表現。在膜厚約為130nm時,有較小的殘留極化量約11μC/cm2,在抗疲勞的性質上也有不錯表現。


    第一章 緒論 5 1-1 簡介 5 1-2 研究動機 6 第二章 文獻回顧 8 2-1 晶體結構與極化機制[11,12,13,14] 8 2-2 鈦酸鉍(Bi4Ti3O12)鐵電材料 11 2-3 鐵電材料之製作 12 2-3-1磁控濺鍍法(Magnetron Sputtering) 13 2-3-2 雷射剝鍍法(Laser Ablation) 13 2-3-3 溶凝膠旋鍍法(Sol-Gel Spin-Coating) 14 2-3-4 金屬有機化學氣相沉積法(Metalorganic chemical vapor deposition,MOCVD) 14 2-3-5 有機金屬鹽裂解法(MOD) 15 2-4 鐵電材料的特性分析 15 2-4-1 介電性質[21-23] 15 2-4-2 漏電流機制[24,25,26,27] 17 2-4-3 崩潰機制(Breakdown) 19 2-4-4 疲勞特性(Fatigue) 21 第三章 實驗程序 23 3-1 電極的鍍製 23 3-2 鐵電膜的製作 25 3-2-1溶凝膠(Sol-Gel)的製備 25 3-2-2薄膜鍍製與熱處理 27 3-3 上電極製作 28 3-4 薄膜分析與量測 29 3-4-1晶相結構 29 3-4-2表面形態與薄膜厚度 29 3-4-3電性量測 30 第四章 結果與討論 32 4-1 不同結晶指向之間的比較 32 4-1-1 晶相結構(XRD分析) 32 4-1-2 表面形態與薄膜厚度 34 4-1-3 電滯曲線(P-E curve) 36 4-1-4漏電流關係和介電常數與散逸因子 37 4-1-5 疲勞特性 38 4-2 不同Sm量摻雜入BIT 40 4-2-1 晶相結構(XRD分析) 40 4-2-2 表面形態與薄膜厚度 41 4-2-3 電滯曲線(P-E curve) 42 4-2-4 疲勞性質和漏電流關係 43 4-2-5 介電常數與散逸因子 45 4-3 Bi3.25Sm0.75Ti3O12薄膜厚度變化 46 4-3-1 晶相結構(XRD分析)和表面形態 46 4-3-2 電滯曲線(P-E curve) 疲勞性質 46 4-3-3 漏電流關係和電容值與散逸因子 48 4-4 不同V量摻雜入BIT 50 第五章 結論 51 參考文獻 54 圖2-1 電滯曲線(P-E 關係圖)..............................................................................60 圖2-2 Sawyer Tower電路........................................................................................60 圖2-3 鈣鈦礦 Perovskite結構................................................................................61 圖2-4 Aurivillius 結構.............................................................................................61 圖 2-5 Bi4-xSmxTi3O12晶體結構圖..........................................................................62 圖 2-6 內層和外層的TiO6投影在(a)(001)和(b)(100)方向上.............................62 圖2-7絕緣體中四種極化機構.................................................................................63 圖2-8 極化機構在頻率變化中對介電常數及散逸因子之影響圖........................64 圖2-9實際電容器的I-V相圖..................................................................................64 圖2-10 Barrier limited 傳導機構(a)Schottky emission (b)tunneling..................65 圖2-11 Bulk limited 傳導機構(a)空間電荷限制傳導(b)陽離子傳(c)Poole-Frenkel................................................................................................65 圖 2-12 以高能的電子打入ABO3結構所形成的數狀結構.................................66 圖2-13 在鈣鈦礦(0k0)方向的投影,圖為單一氧空缺在(101)方向成長為鍊狀..66 圖3-1 流程圖︰實驗主流程圖................................................................................67 圖3-2 元件示意圖....................................................................................................68 圖3-4 RT66A鐵電測試系統之量測元件等效電路圖............................................68 圖3-5 RT66A量測P-E電滯曲線所使用電壓波形圖……...........................……69 圖3-6 RT66A疲勞量測所使用脈衝模式(pulse mode)之脈波序列圖………..…69 圖4-1 在Bi不過量時BIT不同溫度15min熱處理的XRD………...............…70 圖4-2 在Bi不過量下以680oC做15min熱處理後的SEM….................………70 圖4-1-1 在不同溫度下BSmT的XRD……......................................................... 71 圖4-1-2 在不同溫度下BSmT中的peak(117)相對強度關係圖..........................72 圖4-1-3十層BSmT在680℃熱處理後的膜厚......................................................73 圖4-1-4十層BSmT在各溫度下熱處理後的SEM...............................................74 圖4-1-5在不同溫度下BSmT的SPM...................................................................76 圖4-1-6在不同溫度下BSmT對RMS關係圖......................................................77 圖4-1-7在不同溫度下BSmT的電滯曲線圖........................................................78 圖4-1-8在不同溫度下BSmT所能施加最大電場的電滯曲線圖.........................79 圖4-1-9在不同溫度下BSmT的殘留極化量和矯頑電場對量測電壓關係圖........................................................................................................................80 圖4-1-10在不同溫度下BSmT的漏電流圖..........................................................81 圖4-1-11在不同溫度下BSmT的散逸因子和介電常數對頻率關係圖..............82 圖4-1-12 BSmT在650℃退火後的疲勞性質........................................................83 圖4-1-13 BSmT在680℃退火後的疲勞性質........................................................83 圖4-1-14 BSmT在700℃退火後的疲勞性質........................................................84 圖4-1-15 BSmT在720℃退火後的疲勞性質........................................................84 圖4-1-16在不同溫度下BSmT的散逸因子和介電常數對頻率關係圖..............85 圖4-2-1 BIT在不同溫度熱處理時XRD圖..........................................................86 圖 4-2-2 在Sm摻雜為x=0、0.25、0.5、0.75、0.1下的XRD.............................87 圖 4-2-3 空試片載具的XRD..................................................................................88 圖 4-2-4 在鍍製6層後的膜後................................................................................88 圖 4-2-5 不同的Sm摻雜量經退火660℃-30min.................................................89 圖 4-2-6 不同的Sm摻雜量經退火660℃-30min之SPM...................................90 圖 4-2-7 在不同Sm含量下的RMS比較.............................................................92 圖 4-2-8 在不同Sm含量下的P-E曲線圖............................................................93 圖 4-2-9 在不同Sm含量下,殘留極化量和矯頑電場對不同電場下的關係圖........................................................................................................................94 圖 4-2-10 最大殘留極化量和矯頑電場對不同Sm含量關係圖........................ 94 圖 4-2-11 Bi4Ti3O12 之疲勞性質.............................................................................95 圖 4-2-12 Bi3.75Sm0.25Ti3O12 之疲勞性質................................................................96 圖 4-2-13 Bi3.5Sm0.5Ti3O12 之疲勞性質..................................................................97 圖 4-2-14 Bi3.25Sm0.75Ti3O12 之疲勞性質................................................................98 圖 4-2-15 Bi3Sm1Ti3O12 之疲勞性質......................................................................99 圖 4-2-16 Bi4-xSmxTi3O12 之x=0、x=0.25、x=0.5、x=0.75、x=1 normalize疲勞性質比較..........................................................................................................100 圖 4-2-17 Bi4-xSmxTi3O12 之x=0、x=0.25、x=0.5、x=0.75、x=1 漏電流曲線......................................................................................................................101 圖 4-2-18 Bi4-xSmxTi3O12 之x=0、x=0.25、x=0.5、x=0.75、x=1 在不同頻率下之介電常數與散射因子..................................................................................102 圖4-3-1 BSmT在不同層數下以660℃熱處理30min的XRD圖.....................103 圖4-3-2 BSmT在不同層數下以660℃熱處理30min的橫截面SEM..............104 圖4-3-3 BSmT在不同層數下以660℃熱處理30min的SEM..........................106 圖4-3-4 BSmT在不同層數下以660℃熱處理30min的SPM..........................108 圖4-3-5 BSmT在不同層數下電滯曲線對不同電壓圖.......................................110 圖4-3-6 BSmT在不同層數下所能施加最大電場的殘留極化量與電滯曲線.......................................................................................................................111 圖4-3-7 BSmT在不同層數下(a)殘留化量對電場(b)矯頑電場對電場關係圖......................................................................................................................112 圖4-3-8 BSmT在不同層數下±2Pr Normalize後的疲勞表現............................113 圖4-3-9 BSmT在不同層數下(a)散逸因子(b)電容值Cp對頻率關係圖...........114 圖4-3-10 BSmT在不同層數下漏電流和電場關係圖......................................... 115 圖4-3-11 BSmT在不同層數下漏電流..................................................................116 圖4-4-1在不同溫度下Bi3.25Sm0.75Ti2.95V0.05所得的XRD................................. 118 圖4-4-2在不同溫度下Bi3.25Sm0.75Ti2.9V0.1所得的XRD....................................119 圖4-4-3在不同溫度下Bi3.25Sm0.75Ti2.5V0.5所得的XRD....................................120

    1. S. B. Majumder, B. Roy, and R. S. Katiyar and S. B. Krupanidhi, “Effect of acceptor and donor dopants on polarization components of lead zirconate titanate thin films”, Applied Physics Letters, Volume 79(2001)9.
    2. S. B. Majumder, B. Roy, and R. S. Katiyar and S. B. Krupanidhi, “Effect of neodymium (Nd) doping on the dielectric and ferroelectric characteristics of sol-gel derived lead zirconate titanate (53/47) thin films”, Journal Of Applied Physics, Volume 90, NUMBER 6, 15 2001.
    3. I. Boerasu and L. Pintilie and M. Kosec, “Ferroelectric properties of Pb1-3y/2Lay(Zr0.4Ti0.6)O3 structures with La concentration gradients”, Applied Physics Letters, Volume 77, 2 (2000)
    4. B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Jo”Lanthanum-substituted bismuth titanate for use in non-volatile memories”, Nature (London) 401, (1999) 682.
    5. Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Tadashi Iihima, Takayuki Watanabe and Hiroshi Funakubo”Fabrication M3+/V5+ cosubstituted Bismuth Titanate Thin Film by Chemical Solution Deposition Technique”, Jpn. Journal Applied Physics Volume 41 (2002) 6820.
    6. Uong Chon, Ki-Bum Kim, Hyun M. Jang, Gyu-Chul,”Fatigue-free Samarium-modified bismuth titanate(Bi4-xSmxTi3O12) film capacitors having large spontaneous polarizations”, Applied Physics Letters79(2001)3137.
    7. Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada,”Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd3+/V5+ cosubstitution”, Applied Physics Letters Volume 81(2002) 2229.
    8. Ho Nyung Lee and Dietrich Hesse,”Anisotropic ferroelectric properties of epitaxially twinned Bi3.25La0.75Ti3O12 thin films grown with three different orientations”. Applied Physics Letters, Volume 80 (2002)1040.
    9. Ho Nyung Lee, Dietrich Hesse, Nikolai Zakharov, Ulrich Gosele,”Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates”, Science, Volume 296 (2002)2006.
    10. Takayuki Watanabe, Hiroshi Funakubo, Toshimasa Suzuki, Masayuki Fujimoto, Minoru Osada, Yuji Noguchi and Masaru Miyayama,”Preparation and characterization of a- and b-axis-oriented epitaxially grown Bi4Ti3O12-base thin films with long-range lattice matching”, Applied Physics Letters, Volume 81(2002)1660.
    11. Yuhuan Xu, “Ferroelectric Materials And Their Application”, Published by NorthHolland, Netherlands, (1991) 1-36.
    12. 葉明華, “脈衝雷射鍍膜法製備鈣鈦礦型鐵電薄膜之研究”, 清華大學, 博士論文, (1994).
    13. 陳銘森, ”鎳酸鑭電極對鋯鈦酸鉛溶凝膠製作與特性影響之研究”, 清華大學, 博士論文, (1996).
    14. 林家政, ”添加劑(La, Mn, Nb)對溶凝膠PZT鐵電薄膜性質之影響”, 清華大學, 碩士論文, (1996).
    15. 張桑華,”鋯鈦酸鉛PZT(40/60)薄膜摻雜Ni離子鐵電性質之研究”,清華大學,碩士論文,(2002).
    16. 湯淵富,”鐵電薄膜鋯鈦酸鉛(40/60)摻雜Co離子之鐵電性質研究”,清華大學,碩士論文(2002).
    17. Garoline Pirovano, M. Saiful Islam, Rose-Noelle Vannier, Guy Nowogrocki, Gaetan Mairesse,’’Modelling the crystal structures of Aurivillius phases’’, Solid State Ionics, 140(2001)115.
    18. 20Ser Ki Kim, Masaru Miyayama, Hiroaki Yanagida,’’Electrical anisotropy and a plausible explanation for dielectric anomaly of Bi4Ti3O12 single crystal’’, Materials Research Bulletin, Volume 31(1996) 121.
    19. 21Araujo, C. A. et al.’’ Fatigue-free ferroelectric capacitors with platinum electrodes’’. Nature 374(1995)627.
    20. 22Park, B. H. et al. ‘’Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12.’’ Applied Physics Letters, Volume 74(1999)1907.
    21. 24A. J. Moulson and J. M. Herbert, “Electroceramics” Materials, Properties, Applications (1990) 52.
    22. 25B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMS”, O. Auciello and R. Waser eds., Science and Technology of Electroceramic Thin Films, Kluwer Academic Publishers, (1995) 373.
    23. 26吳朗, 電子陶瓷-介電, 全欣資訊圖書, (1994).
    24. 27Milton Ohring, “The Materials Science of Thin Films”, Academic Press, p464-472
    25. 28李雅明, “固態電子學”, 全華出版社, 1995年5月, p413
    26. 29Takashi Mihara and Hitoshi Watanabe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitors : Part I”, Jpn. Journal Applied Physics, 1995, Vol. 34, 5664.
    27. 30Takashi Mihara and Hitoshi Watanabe, “Electronic Conduction Characteristics of Sol-Gel Ferroelectric Pb(Zr0.4Ti0.6)O3 Thin Film Capacitors : Part II”, Jpn. Journal Applied Physics, 1995, Vol. 34, 5674.
    28. 31O’Dwyer J. J., Theory of Dielectric Breakdown in Solids (Clarendon Press, Oxford, 1964); Wolters D.R. and Zegers-van Duijnhoven A. T. A., J. Vac. Sci. Technol. A5, 1563 (1987); Coelho R., Physics of Dielectrics (Elsevier, Lausanne, 1979); Waser R. and Smyth D. M., Ferroelectric Thin Films, eds. Paz de Araujo C. A., Scott J. F., and Taylor G. W. (Gordon & Breach, New York, 1996) p.47; Williams R., Physics Review 125, 850 (1962).
    29. 34Pearsll T. P., J. Appied Physics,’’Growth and dissolution kinetics of , 34, 1591 (1980).
    30. 46W. H. Shepherd, “Fatigue and Aging in Sol-Gel Derived PZT thin films”, Mat. Res. Soc. Symp. Proc. Volume 200(1990)277.
    31. 55Dawber M., B. S. Honours Thesis, Univ. New South Wales(1999); Dawber M. and Scott J. F.’’A model of fatigue in ferroelectric perovskite thin films’’,Applied Physics Letters, 76(2000)1060.
    32. 56Mihara T., Watanabe H., and Paz de Araujo C. A.,’’Polarization Fatigue Characteristics of Sol-Gel Ferroelectric PZT Thin Film Capacitors’’, Jpn. Journal Applied Physics 33(1994)3996.
    33. 59Haoshuang Gu, Anxiang Kuang, Shimin Wang, and Dinghua Bao, Lianshan Wang, Jianshe Liu, Xingjiao Li, ’’Synthesis and ferroelectric properties of c-axis oriented Bi4Ti3O12 thin films by sol-gel process on platinum coated sillicon’’, Applied Physics Letters, Volume 68(1996)1209.
    34. 60N.V. Giridharan, S. Madeswaran,”Structural, morphology and electrical studies on ferroelectric bismuth titanate thin films prepared by sol-gel technique”, R. Jayavel, Journal of Crystal Growth 237-239 (2002)468.
    35. 61Woo Seok Yang, Nam Kyeong Kim, Seung Jin Yeom, Soon Yong Kweon, Eun Seok Choi and Jae Sung Roh, ”Effects of Bottom Electrodes (Pt and IrO2) on Physical and electrical Properties of BLT Thin Film”, Jpn. Journal Applied Physics Volume 40(2001)5569.
    36. 63L.B. Kong, J. Ma,”Randomly oriented Bi4Ti3O12 thin films derived form a hybrid sol-gel process”, Thin Solid Films 379(2000)89.
    37. 64H. N. Lee, D. Hesse, N. Zakharov, U. Gosele,”Ferroelectric Bi3.25La0.75Ti3O12 Films of Uniform a-Axis Orientation on Silicon Substrates”, Science 296, (2002), 2006
    38. 65T. Watanabe, H. Funakubo, K. Saito, T. Suzuki, M. Fujimoto, M. Osada, Y. Noguchi, M. Miyayama,”Preparation and characterization of a- and b-axis-oriented epitaxially grown BIT based thin films with long-range lattice matching”, Apply. Phys. Letters, 81, (2002), 1660
    39. 66T. Kojima, T. Sakai, T. Watanabe, H. Funakubo, K, Saito, M. Osada,”Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition”, Applied Phys. Letters, 80, 15, (2002), 2746.
    40. 68Takayuki Watanabe, Hiroshi Funakubo, Minoru Osada, Yuji Noguchi, Masaru Miyayama,”Effect of cosubstitution of La and V in Bi4Ti3O12 thin films on the low-temperature deposition”, Applied Physics Letters, Volume 80(2002)100.
    41. 69Hiroshi Uchida, Hiroki Yoshikawa, Isao Okada, Hirofumi Matsuda, Takashi lijima, Takayuki Watanabe, Takashi Kojima, Hiroshi Funakubo,”Approach for enhanced polarization of polycrystalline bismuth titanate films by Nd5+/V5+ cosubstitution”, Applied Physics Letters, Volume 81(2002)2229.
    42. 70S. S. Kim, T. K. Song, J. K. Kim, Jinheung Kim,”Ferroelectric properties of vanadium-doped Bi4Ti3O12 thin films deposited by a sol-gel method”, Journal of Applied Physics, Volume 92(2002)2213.
    43. 71J. F. Scott ‘‘Ferroelectric Memories’’ cheap 3.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE