研究生: |
張正憲 Cheng-Hsien Chang |
---|---|
論文名稱: |
熱光型MZI元件背蝕刻效應研究 The Study of Backside-etching Effect in Thermo-optical MZI Device |
指導教授: |
葉鳳生
Fon-Shan Huang 吳清沂 Chin-Yi Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 熱光效應 、背面蝕刻 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要研究以半導體製程技術製作積體光學元件-熱光型調製元件,主要是利用熱光效應改變波導的折射率,達到改變波導的光程;我們以PECVD(Plasma-Enhanced Chemical Vapor Deposition)來成長二氧化矽氧化層以組成波導管的中心部分,藉由調變TEOS/ O2/ TMP的比率來控制折射率,波導核心層折射率n=1.487,覆蓋層折射率n=1.479, 的弱約束(Weakly guiding)波導。
本文包括模擬,波導製程及測量三部份,我們利用Beam Prop 軟體模擬和設計光通道以及模擬元件之特性。在波導製程上,我們以TEOS(Tetraethoxysilane Si(OC2H5)4)為主來製作二氧化矽緩衝層,再以TMP(Trimethylphosphite P(OCH3)3)搭配,提高折射率作為導光層,其優點是沉積速率快,折射率穩定,應力小。如此我們可以沉積品質不錯且相當厚的二氧化矽氧化層而不會產生龜裂。另外由於光波導的形狀及側壁粗糙度是造成光在傳播時損耗的主要來源,所以必須以乾蝕刻RIE(Reactive Ion Etching)來製作導光層,如此才能兼顧比較好的垂直角度及側壁粗糙度;為了降低熱光型調制元件的開關加熱功率,本論文結合微機電技術,蝕刻波導管背面矽基板之體積,以減少由於矽的高導熱係數所導致的熱損失,從而達到降低開關加熱功率的效果,最後再測量成品的光強度,了解其在通道上光的損失。
The purpose of this paper is to Mach-Zehnder interferometer (MZI) which is based on the thermo-optical effect (TOE) of the PECVD(Plasma-Enhanced Chemical Vapor Deposition) SiO2.The refractive index (n) of PECVD SiO2 can be controlled by the mixture of TEOS(Tetraethoxysilane Si(OC2H5)4),O2 and TMP(Trimethylphosphite P(OCH3)3) gases,The required refractive index is 1.487 and 1.479 for core layer and cladding layer.
We use the software called‘Beam Prop” to simulate the MZI device.According to the simulation results,the back-side etching MZI device is made.The waveguide is fabricated by deposited a 10um thick buffer with TEOS, then deposited the core layer doped with TMP to modified its index. After deposition and lithography of Cr mask the core layer is then plasma etched. The sidewall roughness and vertical profile of the waveguide are the two key factors for optical performance of the waveguide. In order to reduce the switch power,we use MEMS technology to etch the backside wafer of waveguide to reduce the volume of silicon substrate and prevent the heat loss from conduction.
[1] Ryoichi Kasahara,Masahiro Yanagisawa,”New Structure of Silica-Based Planar Lightwave Circuits for Low-Power Thermo-optic Switch and its Application to 8 x 8 Optical Matrix Switch”,Journal of lightwave technology,vol.20,NO.6,JUNE 2002
[2] W.P.Hwang, C.L. Xu, S.T. Chu,and S.K. Chandhuri, “A finite-difference vector beam propagation method for three dimension waveguide structure”, IEEE Photon. Technol. Lett. ,vol. 4, pp. 148-151,1992
[3] Q. Lai, W. Hunziker, Member, IEEE, and H. Melechior, Fellow, IEEE,”Low-Power Compact 2 x 2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response”, IEEE, PHOTONICS TECHNOLOGY LETTERS,VOL.10,NO.5,MAY 1998
[4] G. Ronald Hadley ,”Transparent boundary condition for the beam propagation method”,IEEEJ.QuantumElectron,vol.28,
pp.363-370.Jan.1992
[5] Hirosh Nishihara, Masamitsu Haruna, Toshiaki Suhara ”,Optical Integrated Circuits”
[6] Harua,M and J.koyama,”Thermo-optic effect im LiNO3 for light deflection and switching”,Election. Lett., 17(22):842-844.Otc.1981
[7] Harua,M and J.koyama,”Thermo-optic deflection and switching glass”,Appl. Opt.,21(19):3461-3465,Oct. 1982
[8] Harua, M.Sec. 2.2:”Thermo-optic waveguide devices”,JARECT, Vol. 17-Optical Devices and Fibers (Y. Suematsu ed.), Tokyo,Ohmsha,Ltd., and Noth-Horlland Pub. Co.,1985
[9] 張文昌,國立清華大學碩士論文2003
[10] 楊國裕,國立清華大學碩士論文2001