簡易檢索 / 詳目顯示

研究生: 林國華
Lin, Kuo-Hua
論文名稱: 單位元線架構之次臨界電壓 7T 靜態隨機存取記憶體
A Sub-threshold 7T SRAM with Single Bit-line Structure
指導教授: 張彌彰
Chang, Mi-Chang
口試委員: 洪皓喬
Hong, Hao-Chiao
張克正
Chang, Keh-Jeng
張彌彰
Chang, Mi-Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 靜態隨機存取記憶體次臨界七電晶體單元
外文關鍵詞: SRAM, Sub-threshold, 7T cell
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 將靜態隨機存取記憶體之操作電壓降至次臨界區域可大幅減少其功率消耗,然而一般廣泛使用的六電晶體單元之靜態隨機存取記憶體可能無法在次臨界區域成功操作。
    傳統六電晶體單元於次臨界區域操作主要有三大問題,第一為抗靜態雜訊之限度隨電壓而減少,第二為寫入能力不足因電晶體驅動之電流過小,第三為讀取時過大之漏電流干擾正確之讀值,因此許多新型單元被提出以解決次臨界靜態隨機存取記憶體的操作問題。
    十電晶體單元解決了次臨界靜態隨機存取記憶體所造成之操作問題,在讀取時位元線不與存值之結點直接連結加強了讀取時抗雜訊之能力並且大幅減少位元線之漏電流,寫入時抬高字元線之電壓則改善了寫入能力,但是該單元使用了較其他單元更多之面積,本論文提出之單元將原十電晶體單元之差分架構轉為單端之結構,電晶體因此降低到七,然而這將會減弱單元之寫入能力,因此切斷反饋電流之電路被加入以幫助電路寫入,此外一般之差分架構感測放大器無法用於單端之架構,故使用一無需啟動信號之單端感測放大器用來替代傳統之感測放大器。
    在模擬之中,提出之單元證明有較低之漏電流相較於具有相近面積之靜態隨機存取記憶體單元並且較小的面積相對於十電晶體單元。


    Scaling SRAM’s supply voltage to sub-threshold region greatly reduces power consumption. However, the conventional 6T SRAM cell does not operate in sub-threshold region well.
    Conventional 6T SRAM cell has three major issues for operating in sub-threshold region. The first one is low read SNM (static noise margin) with voltage decreased. The second one is worse write ability due to weak transistor current. The third one is leakage current may interfere the read operation. Therefore, many novel cells have been proposed to solve the issues for sub-threshold SRAM [5][9][11].
    This work is based on one of these cells, the 10T cell [11]. A 10T cell solved these issues caused by sub-threshold operations. But it uses more area compared to other cells. We propose a cell that changes the differential structure of 10T cell to single-ended structure, thus, reduces the cell transistor number to 7. However, it has lower write ability. Therefore, boost word-line and cut-off feedback are added to help write ability.
    This cell is shown to have smaller leakage current compared to cell with similar area by simulation. It also has smaller area compared to 10T cells.

    Abstract II CONTENTS I LIST OF FIGURES IV LIST OF TABLES VIII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Conventional 6T SRAM Design 3 2.1 Operation of 6T SRAM and Their Issues 3 2.1.1 Cell Structure 3 2.1.2 Read Operation 4 2.1.3 Write Operation 5 2.1.4 Design Issues 7 2.2 Static Noise Margin and Write Margin 8 2.3 Sub-threshold Current 11 2.4 Issues for Sub-threshold SRAM 12 2.5 Conclusion for 6T cell 14 Chapter 3 Previous Works on SRAM Cell 15 3.1 Common Techniques to Improve SRAM 15 3.1.1 Boost Word-line for Write-assist 15 3.1.2 Divided Word-line / Bit-line Architecture 16 3.2 Read-disturb Free 8T SRAM 16 3.3 Asymmetrical 7T SRAM 17 3.4 Differential Read Scheme 10T SRAM 18 Chapter 4 Proposed 7T SRAM 20 4.1 Introduction 20 4.2 Cell Structure 21 4.3 Control Signal 22 4.4 Layout 23 4.5 Read Operation 28 4.5.1 Sense Amplifier 30 4.5.2 Divided bit-line 32 4.6 Write Operation 36 4.6.1 Boost Word-line 38 4.6.2 Floating Hazard 40 4.7 Bit-line Leakage Current 41 4.8 Analysis of Scale down Effect 42 Chapter 5 Simulations and Comparisons 43 5.1 Comparisons with Previous Works 43 5.2 Scaling with Supply Voltage 48 5.3 Post-Sim Waveform 50 5.4 Simulations in different corners and comparisons to 6T cell 52 Chapter 6 Conclusion and Future Work 57 Reference 58

    [1] The International Technology Roadmap for Semiconductors, 2000 update, Design
    [2] A. Raychowdhury, S. Mukhopadhyay, and K. Roy, “A feasibility study of subthreshold SRAM across technology generations,” Computer Design: VLSI in Computers and Processors, 2005. ICCD 2005. Proceedings. 2005 IEEE International Conference on, 2005, pp. 417-422.
    [3] E. Seevinck, F.J. List, and J. Lohstroh, “Static-noise margin analysis of MOS SRAM cells,” IEEE Journal of Solid-State Circuits , vol. 22, 1987, pp. 748-754.
    [4] B. Calhoun and A. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in 65-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, 2006, pp. 1673-1679.
    [5] N. Verma and A.P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE Journal of Solid-State Circuits, vol. 43, 2008, pp. 141-149.
    [6] K. Ishibashi, K. Takasugi, T. Yamanaka, T. Hashimoto, and K. Sasaki,“A 1-V TFT-load SRAM using a two-step word-voltage method,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1519–1524, Nov. 1992.
    [7] J. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique,” IEEE Journal of Solid-State Circuits, vol. 11, 1976, pp. 374-378.
    [8] A. Karandikar and K.K. Parhi, “Low power SRAM design using hierarchical divided bit-line approach,” International Conference on Computer Design: VLSI in Computers and Processors, 1998. ICCD '98. Proceedings, 1998, pp. 82-88.
    [9] L. Chang, R.K. Montoye, Y. Nakamura, K.A. Batson, R.J. Eickemeyer, R.H. Dennard, W. Haensch, and D. Jamsek, “An 8T-SRAM for Variability Tolerance and Low-Voltage Operation in High-Performance Caches,” IEEE Journal of Solid-State Circuits, vol. 43, 2008, pp. 956-963.
    [10] Azizi, N, Najm, F.N., and Moshovos, A., “Low-leakage asymmetric-cell SRAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, 2003, pp. 701 - 715.
    [11] Ik Joon Chang, Jae-Joon Kim, S.P. Park, and K. Roy, “A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, 2009, pp. 650-658.
    [12] N. Verma and A. Chandrakasan, “A High-Density 45 nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing,” IEEE Journal of Solid-State Circuits, vol. 44, 2009, pp. 163-173.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE