研究生: |
丁姮彣 Ting, Heng-Wen |
---|---|
論文名稱: |
半導體之摻雜、介電層及其表面處理對n-型苝苯亞醯胺衍生物有機薄膜電晶體之影響 Effects of Doping, Dielectric Materials and their Surface Treatments on n-type Perylene Diimide Derivatives Organic Thin Film Transistors |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 有機薄膜電晶體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的為開發可溶式、高空氣穩定度、高載子移動率的有機薄膜電晶體,使其能應用於製程溫度在200°C以下的印刷(printing)製程及不耐高溫之軟性基板上。主要是利用可溶式n-型(n-type)有機半導體苝苯亞醯胺衍生物(perylene diimide derivatives),N,N′-bis(3-fluoro-5-trifluoromethyl-benzyl)tetrachloroperylene-3,4,9,10-bis-(dicarboximide) (簡稱為TC-PDI-F)為半導體材料,以旋轉塗佈法,將TC-PDI-F塗佈於以熱氧化二氧化矽(thermal-SiO2)為閘極介電層之基板上,製作有機薄膜電晶體(organic thin film transistor, OTFT)。並藉由半導體層的摻雜與閘極介電層上的表面處理,提升有機電晶體元件效能。另方面,本研究也將TC-PDI-F整合在可溶式介電層(液相沉積二氧化矽, liquid-phase-deposited SiO2, 簡稱LPD-SiO2)上,以可溶式製程製作有機薄膜電晶體。期待未來可整合軟性基板,製作全可溶式、可撓式薄膜電晶體,以應用在軟性電子產品上。
結果顯示,本研究所使用的半導體材料(TC-PDI-F),可以低溫、溶液方式,利用旋轉塗佈法塗佈在含熱氧化二氧化矽(thermal-SiO2) 之矽基座上,製作有機電晶體,但TC-PDI-F在未經任何表面處理的thermal-SiO2上的成膜性不好,且製作成底接觸有機薄膜電晶體(bottom contact OTFT)後未有電晶體特性。
為提升TC-PDI-F在thermal-SiO2上之成膜性及電晶體效能,本研究中具體的做法及研究重點為:(1)在閘極介電層thermal-SiO2上施以表面處理,改變thermal-SiO2表面性質,預期能改善有機半導體層在thermal-SiO2上的附著性、減少閘極介電層/半導體層介面缺陷(trap states)、增加TC-PDI-F在thermal-SiO2上之晶體排列性,並提升TC-PDI-F 有機薄膜電晶體效能(例如以三甲基矽甲基鋰分子修飾thermal-SiO2並製作成有機薄膜電晶體之元件效能為:載子遷移率μ= 4.44×10-5 cm2V-1s-1、開關電流比Ion/Ioff = 10,起始電壓Vth = 32 V);(2) 以TC-PDI-F為主要半導體材料,利用摻雜的方式,期望能提高有機半導體層之載子濃度、改變電子結構(增加電子能階中的施子能階,即donor levels)、幫助TC-PDI-F有序地排列,以提升TC-PDI-F 有機薄膜電晶體效能及穩定度(例如加入LiF之摻雜物後,可使有機薄膜電晶體效能達到μ= 2.71×10-5 cm2V-1s-1、Ion/Ioff = 12, Vth = 25 V)。
此外,本研究也將有機半導體材料TC-PDI-F,試製在液相沉積二氧化矽(LPD-SiO2) 之可溶式閘極介電層上,製作成有機薄膜電晶體。結果顯示以LPD-SiO2做為閘極介電層,能進一步有效提升TC-PDI-F 有機薄膜電晶體元件效能達μ= 0.26 cm2V-1s-1、Ion/Ioff = 19 、Vth = 11 V,此結果揭示以可溶式製程,在大氣環境下以TC-PDI-F作為半導體層,LPD-SiO2作為閘極介電層,製作有機薄膜電晶體之可行性,將有助於未來可溶式、可撓曲有機薄膜電晶體之開發及應用於軟性電子產品上。
1. R. A. Street, Adv. Mater. 2009, 21, 1
2. H. Klauk, et al., J. Appl. Phys. 2002, 92, 5259
3. V. Sundar, et al., Science, 2004, 303, 1644
4. K. Itaka, et al., Adv. Mater. 2006, 18, 1713
5. S.Tatemichi, et al., Appl. Phys. Lett. 2006, 89, 112108
6. A. Facchetti, Material Today, 2007, 1(3), 28
7. C. R. Newman, Chem. Mater. 2004,16, 4436
8. Handbook of organic electronics and photonics: Electronic materials and devices, Hari Singh Nalwa, 2006, American scientific publishers
9. P. W. Anderson, Phys. Rev. 1958, 109, 1492
10. A. Miller and E. Abrahams, Phys. Rev. 1960, 120,745
11. G. Horowitz, Adv. Mater.1998, 10(5), 365
12. C. R. Newman, et al., Appl. Phys. Lett. 2004, 85, 422
13. A. Facchetti, et al., J. Am. Chem. Soc. 2004, 126, 13859
14. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 2002, 14(2), 99
15. D.M. de Leeuw, et al., Syn. Met. 1997, 87, 53
16. H. Usta, et al., J. Am. Chem. Soc., in press
17. V. Coropceanu, Chem. Rev. 2007, 107, 926
18. D. Braga and G. Horowitz, Adv. Mater. 2009, 21, 1
19. M. H. Yoon, et al., J. Am. Chem. Soc., 2006, 128, 12851
20. A. Facchetti, et al., Adv. Mater. 2005, 17, 1705
21. D. F. Barbe, C. R. Westgate, J. Phys. Chem. Solids. 1970, 31, 2679.
22. M. L. Petrova, L. D. Rozenshtein, F. T. Tela, Sov. Phys. Solid State, 1970, 12, 961.
23. F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 1983, 54, 3255.
24. H. Koezuka, A. Tsumura, T. Ando, Synth. Met. 1987, 18, 699
25. A. Tsumura, H. Koezuka, Y. Ando, Synth. Met. 1988, 25, 11.
26. F. Ebiwasa, J. Appl. Phys. 1983, 54, 3255
27. J. H. Schon, C. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57
28. H. Katz, A. J. Loringer, J. G. Laquindanum, Chem. Mater. 1998, 10, 457
29. H. Katz, Z. Bao, S.Gilat, Adv. Mater. 2002, 14, 99
30. K. Itaka, et al., Adv. Mater. 2006, 18, 1713
31. C. Piliego, et al., Adv. Mater. 2009, 21, 1573
32. M.Chikamatsu, et al., Appl. Phys. Lett. 2005, 87, 203504
33. J. A. Letizia, et al., J. Am. Chem. Soc.,2005, 127, 13476
34. R. Schmidt, et al., J. Am. Chem. Soc. 2009, 131, 6215
35. J. Veres, et al., Chem. Mater. 2004, 16, 4543
36. M. Daraktchiev, et al., New J. Phys. 2005, 7, 133
37. L. L. Chua, et al., Nature, 2005, 434, 194
38. M. H.Yoon, et al., J. Am. Chem. Soc. 2006, 128, 12851
39. H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280,1741
40. A. Salleo, M. L. Chabinyc, M. S. Yang, R. A. Street, Appl. Phys. Lett. 2002, 81, 4383.
41. J.Veres, et al., Adv. Funct. Mater. 2003, 13(3), 199
42. D. J. Gundlach, et al., Nat. mater. 2008, 7,216
43. H. W. Zan, et al., Thin Solid Films, 2008, 516, 2231
44. W. Y. Chou, et al., Appl. Phys. Lett. 2006, 89, 112126
45. J. P. Hornak, The Basics of NMR( http://www.cis.rit.edu/htbooks/nmr/)
46. 陳陵援,儀器分析,1991,三民書局
47. 翁永進編撰, 網路資源,http://www.knV-s.tp.edu.tw/AFM/ch4.htm
48. Atomic force microscopy/scanning tunneling microscopy, S.H. Cohen and M. L. Lightbody., 1999, NewYork: Kluwer Academic/Plenum Publishers
49. 李遠鵬,霍氏轉換紅外光譜儀簡介,科儀新知,1983, 4(3), 29
50. F. M. Fowkes, J. Phys. Chem. 1963, 67, 2538.
51. F. K. Hansen, The Measurement of surface energy of polymer by means of contact angles of liquids on solid surfaces :A short overview of frequently used methods, (http://folk.uio.no/fhansen/surface_energy.pdf)
52. 陳思穎,以溶液方式製備苝苯亞醯胺衍生物作為n-type 有機半導體材料, 國立清華大學碩士論文, 2008,
53. R. Schmidt, et al., J. Am. Chem. Soc., 2009, 131 (17), 6215
54. H. Z. Chen, et al., Chem. Mater. 2007, 19, 81
55. M. L. Tang, et al., J. Am. Chem. Soc., 2009, 131, 3733
56. H. Graaf, et al., Organic Electronics,2004, 5 , 237
57. B. A. Jones, et al., J. Am. Chem. Soc., 2007, 129, 15259
58. H. E. Katz, et al., Nature, 2000, 404 , 478
59. Y. L. Lee, et al., J. Phys. Chem. C, 2008, 112, 1694
60. R. Schmidt, et al., J. Am. Chem. Soc. 2009, 131, 6215
61. D. J. Gundlach, et al., Nat. mater. 2008,7,216
62. H. W. Zan, C. W. Chou, K. H. Yen, Thin Solid Films 2008, 516, 2231
63. W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, Appl. Phys. Lett. 2006, 89, 112126
64. J. Jasieniak, J. Pacifico, R. Signorini, A. Chiasera, M. Ferrari, A. Martucci, P. Mulvaney, Adv. Funct. Mater, 2007, 17, 1654
65. http://www.evidenttech.com/products/evidots/evidot540nm.html
66. B. C. Shekar, J. Lee and S. W. Rhee, Korean J. Chem. Eng. 2004, 21(1), 267
67. Y. Yuan, D. Grozea, S. Han, and Z. H. Lu, Appl. Phys. Lett. 2004, 85(21), 4959
68. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 1997, 70, 152
69. J. H. Wei and S. C. Lee, J. Electrochem. Soc. 1997, 144(5), 1870