簡易檢索 / 詳目顯示

研究生: 陳囿伶
Chen, Yu-Ling
論文名稱: 共沉積氧化鋅/四氧化三錳正極在超級電容器高工作電壓窗口之應用
Co-deposition of ZnO/Mn3O4 cathodes and its application in high operating voltage supercapacitors
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 林建宏
Lin, Jian-Hong
李紫原
Lee, Chi-Young
陳翰儀
Chen, Han-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 共沉積高工作電壓水系超級電容器
外文關鍵詞: co-deposition, high operating voltage, aqueous supercapacitors
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於水系電解液的超級電容器而言,在實際應用上面臨的困境,主要
    來自於和使用有機系電解液的超級電容器相比而言,相對較低的工作電壓
    窗口,因而導致的低能量密度儲存量。本研究為改善此一問題,利用電極
    表面修飾以提升正極的工作電壓窗口,並且透過後續組裝非對稱電容器,
    以達到進一步拓寬使用電壓區間的效果。
    研究內容透過利用水熱法以及熱處理,來進行氧化鋅以及四氧化三錳
    的共沉積。均勻生長在四氧化三錳周圍的氧化鋅,不僅可以藉由提升導電
    度,以增進四氧化三錳的電荷轉移能力; 同時利用氧化鋅在中性電解液環
    境中,不進行電化學反應的特性,氧化鋅可以作為物理支撐,防止四氧化
    三錳在充放電的過程中,發生顆粒團聚的現象。
    將此氧化鋅/四氧化三錳正極和活性碳負極進行配比,組裝而成的非對
    稱電容器可以在 1.0 M 的硫酸鈉電解液中,擁有高達 2.4 V 的工作電壓口,
    並且在功率密度為 1051 W/kg 的情形下,輸出最高 54 Wh/kg 的能量密度。


    The critical restriction of aqueous supercapacitors (SCs) lies in their low operating
    potential comparing to those organic SCs, which severely limits the energy density and
    further potential of practical applications. In this study, we used electrode surface
    modification to broaden the operating voltage for cathodes and further extend the
    potential window by assembling asymmetric supercapacitors (ASCs).
    Herein, a well-distributed co-metal oxides system which combing Mn3O4 along
    with ZnO via hydrothermal treatment followed by post-annealing treatment was
    introduced. The well-distributed ZnO grown adjacent to Mn3O4 endows faster charge
    transfer kinetics for Mn3O4. Besides, the inactive electrochemical property of ZnO in
    neutral electrolyte also lets it become physical stabilizer for Mn3O4 preventing it from
    aggregating during charge/discharge process.
    By paring with commercial activated carbon anode, a wide operating voltage (2.4
    V) asymmetric supercapacitors in 1.0 M Na2SO4 aqueous electrolyte was assembled.
    Especially, the 2.4 V ZnO/Mn3O4//AC ASCs could deliver a maximum energy density
    of up to 54 Wh kg-1 at a power density of 1051 W kg-1.

    摘要………………………………………………………………….…………………I Abstracrt ………………………………………………………………………… …. II 表目錄…………………………………………………………………………….….VI 圖目錄……………………………………………………...………………………. VII 第 1 章 緒論 ...............................................................................................................1 1.1 前言.................................................................................................................. 1 1.2 研究動機.......................................................................................................... 2 第 2 章 文獻回顧 .......................................................................................................4 2.1 超级電容器储能原理...................................................................................... 6 2.1.1 電雙層電容器 ............................................................................................. 7 2.1.2 擬電容器 ..................................................................................................... 9 2.2 雙電層電容器理論與模型演進.................................................................... 10 2.3 電解液............................................................................................................ 12 2.3.1 水系電解液 ............................................................................................... 12 2.3.2 有機系電解液 ........................................................................................... 13 2.3.3 離子液體 ................................................................................................... 13 2.4 水系電解液之工作電壓窗口研究................................................................ 14 2.4.1 非對稱超級電容器 ................................................................................... 15 2.4.2 氧化還原活性添加劑 ............................................................................... 16IV 2.4.3 電極表面設計與修飾 ............................................................................... 17 2.5 電極材料評估………………………………………………………………….18 第 3 章 實驗方法與分析 .........................................................................................28 3.1 實驗藥品........................................................................................................ 28 3.2 實驗步驟........................................................................................................ 28 3.2.1 高溫碳化蠶絲碳布製備 ........................................................................... 28 3.2.2 共沉積 ZnO/Mn3O4 正極製備.................................................................. 29 3.2.3 活性碳負極製備 ....................................................................................... 29 3.2.4 非對稱電容器鈕扣電池組裝 ................................................................... 30 3.3 實驗分析方法及使用儀器............................................................................ 30 3.4 電化學測試技術............................................................................................ 33 第 4 章 結果與討論 .................................................................................................37 4.1 雙相金屬氧化物 ZnO/Mn3O4 之分析........................................................... 37 4.1.1 X 光繞射光譜之晶體結構分析 .............................................................. 38 4.1.2 表面元素分析与化学组成 ....................................................................... 39 4.1.3 掃描式電子顯微鏡之形貌分析 ............................................................... 40 4.1.4 穿透式電子顯微鏡之形貌分析 ............................................................... 41 4.2 ZnO/Mn3O4 正極之電化學特性分析............................................................ 42 4.3 非對稱電容器之電化學特性分析................................................................ 45V 第 5 章 結論 .............................................................................................................67 参考文献 .....................................................................................................................68

    [1] W. Zuo, C. Xie, P. Xu, Y. Li, J. Liu, A Novel Phase-Transformation Activation Process
    toward Ni-Mn-O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors,
    Advanced Materials 29(36) (2017).
    [2] D. Zhou, H. Lin, F. Zhang, H. Niu, L. Cui, Q. Wang, F. Qu, Freestanding MnO 2
    nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes,
    Electrochimica Acta 161 (2015) 427-435.
    [3] J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Fast and reversible surface redox
    reaction of graphene–MnO2 composites as supercapacitor electrodes, Carbon 48(13) (2010)
    3825-3833.
    [4] M. Tian, M. Du, L. Qu, K. Zhang, H. Li, S. Zhu, D. Liu, Conductive reduced graphene
    oxide/MnO2 carbonized cotton fabrics with enhanced electrochemical, -heating, and -
    mechanical properties, Journal of Power Sources 326 (2016) 428-437.
    [5] G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared
    graphene-paper electrodes for high-performance electrochemical supercapacitors, Small 8(3)
    (2012) 452-459.
    [6] F. Liu, S. Song, D. Xue, H. Zhang, Folded structured graphene paper for high performance
    electrode materials, Advanced Materials 24(8) (2012) 1089-1094.
    [7] C.-L. Liu, K.-H. Chang, C.-C. Hu, W.-C. Wen, Microwave-assisted hydrothermal
    synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors,
    Journal of Power Sources 217 (2012) 184-192.
    [8] G.C. Li, P.F. Liu, R. Liu, M. Liu, K. Tao, S.R. Zhu, M.K. Wu, F.Y. Yi, L. Han, MOF -
    derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance
    supercapacitors, Dalton Trans 45(34) (2016) 13311-13316.
    [9] G. Xin, Y. Wang, X. Liu, J. Zhang, Y. Wang, J. Huang, J. Zang, Preparation of self -
    supporting graphene on flexible graphite sheet and electrodeposition of polyaniline for
    supercapacitor, Electrochimica Acta 167 (2015) 254-261.
    [10] L. Ma, R. Liu, L. Liu, F. Wang, H. Niu, Y. Huang, Facile synthesis of
    Ni(OH)2/graphene/bacterial cellulose paper for large areal mass, mechanically tough and
    flexible supercapacitor electrodes, Journal of Power Sources 335 (2 016) 76-83.
    [11] D. Sheberla, J.C. Bachman, J.S. Elias, C.J. Sun, Y. Shao-Horn, M. Dinca, Conductive
    MOF electrodes for stable supercapacitors with high areal capacitance, Nat ure Material 16(2)
    (2017) 220-224.
    [12] W. Cai, T. Lai, W. Dai, J. Ye, A facile approach to fabricate flexible all-solid-state
    supercapacitors based on MnFe2O4/graphene hybrids, Journal of Power Sources 255 (2014)
    170-178.
    [13] Z. Tang, C.-h. Tang, H. Gong, A High Energy Density Asymmetric Supercapacitor from
    Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes, Advanced Functional Materials
    22(6) (2012) 1272-1278.
    [14] K.V. Sankar, R.K. Selvan, The ternary MnFe 2O4/graphene/polyaniline hybrid composite
    as negative electrode for supercapacitors, Journal of Power Sources 275 (2015) 399 -407.
    [15] Y. Wang, H. Wei, J. Wang, J. Liu, J. Guo, X. Zhang, B.L. Weeks, T.D. Shen, S. Wei, Z.
    Guo, Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color
    switching response and electrochemical energy storage, Journal of Material Chemistry A 3(41)
    (2015) 20778-20790.
    [16] P. Xiong, C. Hu, Y. Fan, W. Zhang, J. Zhu, X. Wang, Ternary manganese
    ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance
    performance, Journal of Power Sources 266 (2014) 384-392.
    [17] Y. Liu, N. Zhang, C. Yu, L. Jiao, J. Chen, MnFe 2O4@C Nanofibers as High-Performance
    Anode for Sodium-Ion Batteries, Nano Letter 16(5) (2016) 3321-3328.
    [18] P.J. Derbyshire, H. Barr, F. Davis, S.P. Higson, Lactate in human sweat: a critical review
    of research to the present day, Journal Physiological Sciences 62(6) (2012) 429-440.
    [19] S.-L. Kuo, N.-L. Wu, Electrochemical characterization on MnFe 2O4/carbon black
    composite aqueous supercapacitors, Journal of Power Sources 162(2) (2006) 1437 -1443.
    [20] X. Cheng, X. Gui, Z. Lin, Y. Zheng, M. Liu, R. Zhan, Y. Zhu, Z. Tang, Three -dimensional
    α-Fe2O3/carbon nanotube sponges as flexible supercapacitor electrodes, Journal of Material69
    Chemistry A 3(42) (2015) 20927-20934.
    [21] B.E. Conway, Transition from “supercapacitor” to “battery” behavior in electrochemical
    energy storage, Journal of the Electrochemical Society 138(6) (1991) 1539 -1548.
    [22] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage
    and conversion, Handbook of Clean Energy Systems (2015).
    [23] V. Aravindan, J. Gnanaraj, Y.S. Lee, S. Madhavi, Insertion-Type Electrodes for
    Nonaqueous Li-Ion Capacitors, Chemical Reviews 114(23) (2014) 11619-11635.
    [24] S.-Y. Yang, K.-H. Chang, H.-W. Tien, Y.-F. Lee, S.-M. Li, Y.-S. Wang, J.-Y. Wang, C.-
    C.M. Ma, C.-C. Hu, Design and tailoring of a hierarchical graphene -carbon nanotube
    architecture for supercapacitors, Joural of Material Chemistry 21(7) (2011) 2374-2380.
    [25] Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, R.B. Kaner,
    Graphene-based materials for flexible supercapacitors, Chemical Society Reviews 44(11)
    (2015) 3639-3665.
    [26] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage
    and Conversion, Handbook of Clean Energy Systems. (2015) 1-25.
    [27] E. Frackowiak, Carbon materials for supercapacitor application, Physical Chemistry
    Chemical Physics 9(15) (2007) 1774-1785.
    [28] B. Hsia, J. Marschewski, S. Wang, J.B. In, C. Carraro, D. Poulikakos, C.P. Grigoropoulos,
    R. Maboudian, Highly flexible, all solid-state micro-supercapacitors from vertically aligned
    carbon nanotubes, Nanotechnology 25(5) (2014) 055401.
    [29] C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an
    ultrahigh energy density, Nano Letters 10(12) (2010) 4863-4868.
    [30] C.C. Hu, K.H. Chang, A. Mingchamp Lin, Y.T. Wu, Design and Tailoring of the
    Nanotubular Arrayed Architecture of Hydrous RuO 2 for Next Generation Supercapacitors,
    Nano Letters 6(12) (2006) 2690-2695.
    [31] X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Fast Supercapacitors Based
    on Graphene-Bridged V2O3/VOxCore-Shell Nanostructure Electrodes with a Power Density
    of 1 MW kg−1, Advanced Materials Interfaces 1(9) (2014) 1400398.
    [32] S. Nagamuthu, S. Vijayakumar, K.-S. Ryu, Synthesis of Ag Anchored Ag 3VO4Stacked
    Nanosheets: Toward a Negative Electrode Material for High-Performance Asymmetric
    Supercapacitor Devices, The Journal of Physical Chemistry C 120(34) (2016) 18963 -18970.
    [33] Y. Chen, K. Cai, C. Liu, H. Song, X. Yang, High‐Performance and Breathable Polypyrrole
    Coated Air‐Laid Paper for Flexible All‐Solid‐State Supercapacitors, Advanced Energy
    Materials 7(21) (2017).
    [34] A. Yu, V. Chabot, Z. Chen, J. Zhang, Electrochemical Supercapacitors for Energy Sto rage
    and Delivery, Crc Press (2013).
    [35] D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chemical
    Reviews 41(3) (1947) 441-501.
    [36] M.A.V. Devanathan, B.V.K.S.R.A. Tilak, The Structure of the Electrical Double Layer
    at the Metal-Solution Interface, Chemical Reviews 65(6) (1965) 635-684.
    [37] B.E. Conway, Electrochemical Supercapacitors, Plenum Press1999.
    [38] A. Burke, R&D considerations for the performance and application of electrochemical
    capacitors, Electrochimica Acta 53(3) (2007) 1083-1091.
    [39] H.A. Mosqueda, O. Crosnier, L. Athouël, Y. Dandeville, Y. Scudeller, P. Guillemet, D.M.
    Schleich, T. Brousse, Electrolytes for hybrid carbon–MnO 2 electrochemical capacitors,
    Electrochimica Acta 55(25) (2010) 7479-7483.
    [40] M. Morita, M. Goto, Y. Matsuda, Ethylene carbonate-based organic electrolytes for
    electric double layer capacitors, Journal of Applied Electrochemistry 22(10) (1992) 901 -908.
    [41] T. Morimoto, K. Hiratsuka, Y. Sanada, K. Kurihara, Electric double -layer capacitor using
    organic electrolyte, Mrs Proceedings 496(2) (1997) 239-247.
    [42] Q. Zhu, Y. Song, X. Zhu, X. Wang, Ionic liquid -based electrolytes for capacitor
    applications, Journal of Electroanalytical Chemistry 601(1) (2007) 229 -236.
    [43] T.Y. Kim, H.W. Lee, M. Stoller, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, K.S. Suh,
    High-Performance Supercapacitors Based on Poly(ionic liquid) -Modified Graphene
    Electrodes, Acs Nano 5(1) (2011) 436-442.
    [44] T. Zhai, X. Lu, Y. Ling, M. Yu, G. Wang, T. Liu, C. Liang, Y. Tong, Y. Li, A new
    benchmark capacitance for supercapacitor anodes by mixed -valence sulfur-doped V6O(13-x),70
    Advanced Materials 26(33) (2014) 5869-5875.
    [45] C. Zhou, Y. Zhang, Y. Li, J. Liu, Construction of high-capacitance 3D CoO@polypyrrole
    nanowire array electrode for aqueous asymmetric supercapacitor, Nano Letters 13(5) (2013)
    2078-2085.
    [46] Z. Gao, W. Yang, J. Wang, N. Song, X. Li, Flexible all -solid-state hierarchical NiCo2O
    4 /porous graphene paper asymmetric supercapacitors with an exceptional combina tion of
    electrochemical properties, Nano Energy 13 (2015) 306-317.
    [47] J. Chang, M. Jin, F. Yao, T.H. Kim, V.T. Le, H. Yue, F. Gunes, B. Li, A. Ghosh, S. Xie,
    Asymmetric Supercapacitors Based on Graphene/MnO 2 Nanospheres and Graphene/MoO3
    Nanosheets with High Energy Density, Advanced Functional Materials 23(40) (2013) 5074 -
    5083.
    [48] M. Yu, Y. Lu, H. Zheng, X. Lu, New Insights into the Operating Voltage of Aqueous
    Supercapacitors, Chemistry - A European Journal (2017).24(15)
    [49] S.E. Chun, B. Evanko, X. Wang, D. Vonlanthen, X. Ji, G.D. Stucky, S.W. Boettcher,
    Design of aqueous redox-enhanced electrochemical capacitors with high specific energies
    and slow self-discharge, Nature Communications 6 (2015) 7818.
    [50] J.Y. Hwang, M. Li, M.F. El-Kady, R.B. Kaner, Next‐Generation Activated Carbon
    Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy
    Density, Advanced Functional Materials 27(15) (2017) 1605745.
    [51] L.Q. Mai, A. Minhaskhan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Synergistic
    interaction between redox-active electrolyte and binder-free functionalized carbon for
    ultrahigh supercapacitor performance, Nature Communications 4(1) (2013) 2923.
    [52] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Highly active and durable nonprecious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction,
    Energy & Environmental Science 7(6) (2014) 1919-1923.
    [53] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemist ry of the
    hydrogen-evolution reaction through combining experiment and theory, Angewandte Chemie
    International Edition 54(1) (2015) 52-65.
    [54] N. Jabeen, A. Hussain, Q. Xia, S. Sun, J. Zhu, X. Hui, High‐Performance 2.6 V Aqueous
    Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled
    Nanowall Arrays, Advanced Materials 29(32) (2017).
    [55] H.J. Chu, C.Y. Lee, N.H. Tai, Green preparation using black soybeans extract for
    graphene-based porous electrodes and their applications in supercapacitors, Journal of Power
    Sources 322 (2016) 31-39.
    [56] B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical Supercapacitors for Energy Storage
    and Conversion, John Wiley & Sons, Ltd 2014:1-25.
    [57] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, X. Zou, Charging and discharging
    electrochemical supercapacitors in the presence of both parallel leakage process and
    electrochemical decomposition of solvent, Electrochimica Acta 90(1) (2013) 542 -549.
    [58] J.W. Lee, A.S. Hall, J.D. Kim, T.E. Mallouk, A Facile and Template-Free Hydrothermal
    Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long
    Cycle Stability, Cheminform 43(24) (2012) 1158-1164.
    [59] T. Prasankumar, V.S.I. Aazem, P. Raghavan, K.P. Ananth, S. Biradar, R. Ilangovan, S.
    Jose, Microwave assisted synthesis of 3D network of Mn/Zn bimetallic oxide -high
    performance electrodes for supercapacitors, Journal of Alloys & Compounds 695 (2017)
    2835-2843.
    [60] C. Xiong, T. Li, A. Dang, T. Zhao, H. Li, H. Lv, Two -step approach of fabrication of
    three-dimensional MnO2-graphene-carbon nanotube hybrid as a binder-free supercapacitor
    electrode, Journal of Power Sources 306 (2016) 602-610.
    [61] N. Yu, H. Yin, W. Zhang, Y. Liu, Z. Tang, M.-Q. Zhu, High-Performance Fiber-Shaped
    All-Solid-State Asymmetric Supercapacitors Based on Ultrathin MnO 2 Nanosheet/Carbon
    Fiber Cathodes for Wearable Electronics, Advanced Energy Materials 6(2) (2016) 1501458.
    [62] H. Yi, H. Wang, Y. Jing, T. Peng, Y. Wang, J. Guo, Q. He, Z. Guo, X. Wang, Advanced
    asymmetric supercapacitors based on CNT@Ni(OH) 2 core–shell composites and 3D graphene
    networks, Journal of Materials Chemistry A 3(38) (2015) 19545-19555.
    [63] B. Amutha, M. Sathish, A 2 V asymmetric supercapacitor based on reduced graphene
    oxide-carbon nanofiber-manganese carbonate nanocomposite and reduced graphene oxide in71
    aqueous solution, Journal of Solid State Electrochemistry 19(8) (2015) 2311 -2320.
    [64] C.H. Wang, H.C. Hsu, J.H. Hu, High-energy asymmetric supercapacitor based on petalshaped MnO2 nanosheet and carbon nanotube-embedded polyacrylonitrile-based carbon
    nanofiber working at 2V in aqueous neutral electrolyte, Journal of Power Sources 249(1)
    (2014) 1-8.
    [65] H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Flexible Asymmetric Micro -
    Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher
    Energy Density, Advanced Energy Materials 5(6) (2015) 1401882.

    QR CODE