簡易檢索 / 詳目顯示

研究生: 黃茂誠
Huang, Mao-Cheng
論文名稱: 以熱注射法合成高品質銅鋅錫硫奈米粒子及其生長機制之探討
Study on the growth mechanism of high quality Cu2ZnSnS4 nanoparticles synthesized by hot injection method
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 段興宇
江建志
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 60
中文關鍵詞: 銅鋅錫硫奈米粒子熱注射法LaMer模型生長機制薄膜太陽能電池
外文關鍵詞: CZTS nanoparticles, Hot injection, LaMer model, Growth mechanism, Thin film solar cells
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前世界上效率最高的薄膜太陽能電池Cu(In,Ga)Se2(CIGS)已達到20%,但是CIGS中的銦及鎵為稀有金屬,因此,另一種具有潛力的新穎四元化合物半導體材料Cu2ZnSnS4(CZTS)被提出來要取代CIGS。CZTS具有高吸收係數,為直接能隙之半導體,能隙為1.5eV,組成的四種元素銅、鋅、錫、硫皆為地表上富含的元素而且是一個無毒材料。
    不同於CIGS的是,目前CZTS的最高元件效率是溶液聯胺法來製備,但因為聯胺是一種毒性且不穩定的化合物,因此,本研究使用熱注射法來合成CZTS奈米粒子。
    我們成功的利用熱注射法合成高品質之CZTS奈米粒子,藉由調控反應參數來探討熱注射法中CZTS的生長機制。我們由TEM觀察不同反應條件所生成的CZTS之粒徑大小,並由LaMer model去解釋在熱注射法中奈米粒子的成核及成長過程。我們也藉由XRD及拉曼光譜來鑑定CZTS,我們在拉曼光譜上發現CZTS的結晶性會隨不同的反應條件而有所不同,不同於一般的熱注射法,我們緩慢的注射前驅物來得到高品質之CZTS,我們提出結晶性的不同是因為反應可能分別傾向Ostwald ripening及oriented attachment的生長機制。另外,我們也在XRD上觀察到Wurtzite及kesterite結構之CZTS會在熱注射法中共存。


    The highest efficiency Cu(In,Ga)Se2(CIGS) thin film solar cells have reached 20%. However, the indium and gallium are rare elements in the crust. A promising quaternary semiconductor Cu2ZnSnS4(CZTS) has been proposed to replace CIGS. CZTS is composed of four earth abundant elements, and has some advantages such as high absorption coefficient, direct band gap of 1.5eV, and nontoxic material.
    The highest CZTS device was fabricated by the solution based hydrazine process. However, hydrazine is a vary toxic and unstable compound, so we choose the hot injection method to synthesize CZTS nanoparticles.
    We have successfully synthesized high quality CZTS nanoparticles by the hot injection method, and we discussed the CZTS growth mechanism via tuning reaction conditions. We used TEM to observe the size of different nanoparticles, and explained its nucleation and growth mechanism by LaMer model. We also measured CZTS by using XRD and Raman spectrum to identify its structures and phases, and we found that different crystallinity in different reaction condition. Different from other hot injection methods, we used slow injection synthesis to get the high quality CZTS, and we proposed a possible reason to explain why the CZTS nanoparticles possessed different cystallinity. Ostwald ripening and oriented attachment are two mechanisms which may result in different crystallinity during the growth. Moreover, we also observed wurtzite and kesterite CZTS would coexist in the hot injection synthesis.

    Abstract I 摘要 II 致謝 III 目錄 IV 圖次 VI 表次 VIII 第一章 序論 1 第二章 文獻回顧 3 2.1 CZTS之基本性質 3 2.1.1 CZTS之晶體結構 3 2.1.2 CZTS之光學性質 5 2.1.3 CZTS內之缺陷與載子複合機制 6 2.2 真空製程 8 2.3非真空製程: 合成CZTS 奈米粒子之方法 9 2.3.1 聯胺法(Hydrazine method) 9 2.3.2 溶膠凝膠法(sol gel method) 10 2.3.3溶熱法/水熱法(solvothermal/hydrothermal method) 11 2.3.4 電化學沉積法 13 2.3.5熱注射法(Hot-injection method) 13 2.4化學處理 16 2.5 CZTS之應用 18 2.5.1 CZTS在能源上的應用 18 2.5.2 Kesterite 系列之化合物 19 2.6不同奈米結構之kesterite 化合物 21 2.7 CZTS 生成及生長機制 23 2.8 研究動機 23 第三章 實驗方法與分析技術 24 3.1實驗藥品 24 3.2 實驗流程 24 3.3分析儀器 25 3.3.1 X-ray diffraction (XRD) 25 3.3.2 Raman spectroscopy 26 3.3.3 Transmission electron microscopy 26 第四章 結果與討論 28 4.1 升溫法(Heat-up)合成CZTS奈米粒子 28 4.2 熱注射法(Heat-up)合成CZTS奈米粒子 32 4.2.1合成溫度效應 32 4.2.2 反應時間效應 32 4.2.3 注射速率在CZTS合成上的影響 35 4.2.4前驅物濃度的影響 41 4.2.5 硫注射濃度之影響 46 第五章 結論 54 參考文獻 55

    1. Available from: http://www.nrel.gov/ncpv/.
    2. Shockley, W. and H.J. Queisser, Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics, 1961. 32(3): p. 510.
    3. Joachim Paier, Ryoji Asahi, Akihiro Nagoya, and Georg Kresse, Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study. Physical Review B, 2009. 79(11).
    4. Xiaotang Lu, Zhongbin Zhuang, Qing Peng and Yadong Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem Commun (Camb), 2011. 47(11): p. 3141-3.
    5. Kentaro Ito and tatsuo Nakazawa, Electrical and opticle properties of stannite type quanternary semiconductor thin films.pdf.Japanese Journal of Applied Physics, vol 27.No 11.,1998,p.2094-2097.
    6. Kunihiko Tanaka, Yuki Fukui, Noriko Moritake, Hisao Uchiki, Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Solar Energy Materials and Solar Cells, 2011. 95(3): p. 838-842.
    7. Suresh Babu G., Kishore Kumar Y.B., Uday Bhaskar P., Sundara Raja Vanjari , Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films. Solar Energy Materials and Solar Cells, 2010. 94(2): p. 221-226.
    8. Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Applied Physics Letters, 2010. 96(2): p. 021902.
    9. S. B. Zhang, Su-Huai Wei, H. Katayama-Yoshidaand Alex Zunger,Defect physics of the CuInSe2 chalcopyrite semiconductor. PHYSICAL REVIEW B, 1998,Vol 57,p.9642-9656
    10. Raulot, J.M., C. Domain, and J.F. Guillemoles, Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 2019-2023.
    11. Shiyou Chen, Ji-Hui Yang, X. G. Gong, Aron Walsh and Su-Huai Wei , Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Physical Review B, 2010. 81(24).
    12. C.-S Jiang,R. Noufi, K. Ramanathan, J. A. AbuShama,H. R. Moutinho, and M. M. Al-Jassim, Does the local built-in potential on grain boundaries of Cu(In,Ga)Se2 thin films benefit photovoltaic performance of the device? Applied Physics Letters, 2004. 85(13): p. 2625.
    13. Li, J.B., V. Chawla, and B.M. Clemens, Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv Mater, 2012. 24(6): p. 720-3.
    14. Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz,Richard Menner, Wiltraud Wischmann and Michael Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897.
    15. Hironori Katagiri, Nobuyuki Sasaguchi, Shima Hando, Suguru Hoshino, Jiro Ohashi, Takaharu Yokota, Preparation and evalution of CZTS thin films by sulfurization of EB evaporated precursors. Solar Energy Materials and Solar Cells, 1997, 49: p. 407-414.
    16. Hironori Katagiri, Kotoe Saitoh, Tsukasa Washio, Hiroyuki Shinohara, Tomomi Kurumadani, Shinsuke Miyajima, Development of thin film solar cell based on CZTS thin films., Solar Energy Materials and Solar Cells, 65, 2001,p. 141-148.
    17. Hironori Katagiri, Kazuo Jimbo, Satoru Yamada, Tsuyoshi Kamimura, Win Shwe Maw,Tatsuo Fukano, Tadashi Ito, and Tomoyoshi Motohiro, Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 2008. 1: p. 041201.
    18. Byungha Shin, Oki Gunawan, Yu Zhu, Nestor A. Bojarczuk, S. Jay Chey and Supratik Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 72-76.
    19. Ingrid Repins, Carolyn Beall, Nirav Vora, Clay DeHart, Darius Kuciauskas, Pat Dippo, Bobby To,Jonathan Mann, Wan-Ching Hsu, Alan Goodrich, Rommel Noufi, Co-evaporated Cu2ZnSnSe4 films and devices. Solar Energy Materials and Solar Cells, 2012. 101: p. 154-159.
    20. Todorov, T.K., K.B. Reuter, and D.B. Mitzi, High-efficiency solar cell with Earth-abundant liquid-processed absorber. Adv Mater, 2010. 22(20): p. E156-9.
    21. A.V. Moholkar , S.S. Shinde , A.R. Babar , Kyu-Ung Sim , Hyun Kee Lee , K.Y. Rajpure , P.S. Patil ,C.H. Bhosale , J.H. Kim, Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: Solar cells. Journal of Alloys and Compounds, 2011. 509(27): p. 7439-7446.
    22. Tsukasa Washio,Tomokazu Shinji,Shin Tajima,Tatsuo Fukano, Tomoyoshi Motohiro, Kazuo Jimbo and Hironori Katagiri, 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. Journal of Materials Chemistry, 2012. 22(9): p. 4021.
    23. Teodor K. Todorov , Jiang Tang , Santanu Bag , Oki Gunawan , Tayfun Gokmen , Yu Zhu and David B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4Solar Cells. Advanced Energy Materials, 2013. 3(1): p. 34-38.
    24. David B. Mitzi, Laura L. Kosbar, Conal E. Murray, Matthew Copel and Ali Afzali<High-mobility ultrathin semiconducting films prepared by spin coating.pdf., NATURE,VOL 428,p.299-303.
    25. David B. Mitzi, Min Yuan, Wei Liu, Andrew J. Kellock, S. Jay Chey, Vaughn Deline and Alex G. Schrott, A High-Efficiency Solution-Deposited Thin-Film Photovoltaic Device. Advanced Materials, 2008. 20(19): p. 3657-3662.
    26. Teodor K. Todorov, Oki Gunawan, Tayfun Gokmen and David B. Mitzi, Solution-processed Cu(In,Ga)(S,Se)2absorber yielding a 15.2% efficient solar cell. Progress in Photovoltaics: Research and Applications, 2013. 21(1): p. 82-87.
    27. Tanaka, K., N. Moritake, and H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Solar Energy Materials and Solar Cells, 2007. 91(13): p. 1199-1201.
    28. Kunihiko Tanaka, Masatoshi Oonuki, Noriko Moritake, Hisao Uchiki, Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Solar Energy Materials and Solar Cells, 2009. 93(5): p. 583-587.
    29. Z Q Li , J H Shi , Q Q Liu , Y W Chen , Z Sun , Z Yang and S M Huang, Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires. Nanotechnology, 2011. 22(26): p. 265615.
    30. Yan-Li Zhou, Wen-Hui Zhou, Mei Li, Yan-Fang Du, and Si-Xin Wu, Hierarchical Cu2ZnSnS4Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism. The Journal of Physical Chemistry C, 2011. 115(40): p. 19632-19639.
    31. A. Ennaoui , M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr,A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films, 2009. 517(7): p. 2511-2514.
    32. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F.V. Kurdesau,A.N. Tiwari, M. Dfbeli, Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells. Thin Solid Films, 2005. 480-481: p. 433-438.
    33. C. B. Murray, D. J. Noms, and M. G. Bawendi,Synthesis and Characterization of Nearly Monodisperse CdE(E=S,Se,Te) semiconductor nanocrystallites., J . Am. Chem. Soc. 1993, 115, 8706-8715.
    34. VICTOR K. LAMER and ROBERT H. DINEGA,Theory Production and Mechanism of Formation of Monodispersed Hydrosols.,Journal of the American Chemical Society,1950,vol 72,p.4847-4854.
    35. Qijie Guo, Hugh W. Hillhouse and Rakesh Agrawal,Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells., J. AM. CHEM. SOC. 2009, 131, 11672–11673.
    36. Qijie Guo, Gr ayson M. Ford,Wei-Chang Yang,Bryce C. Walker,Eric A. Stach, Hugh W. Hillhouse and Rakesh Agrawal,Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals., J. AM. CHEM. SOC. 2010, 132, 17384–17386.
    37. Yun Ku Jung, Jae Il Kim, and Jin-Kyu Lee,Thermal Decomposition Mechanism of Single-Molecule precursors forming metal sulfide nanoparticles., J. AM. CHEM. SOC. 2010, 132, 178–184.
    38. Shannon C. Riha,Bruce A. Parkinson and Amy L. Prieto,Solution-Based Synthesis and Characterization of Cu2ZnSnS4 Nanocrystals., J. AM. CHEM. SOC. 2009, 131, 12054–12055.
    39. Chet Steinhagen, Matthew G. Panthani, Vahid Akhavan, Brian Goodfellow, Bonil Koo, and Brian A. Korgel,Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics., J. AM. CHEM. SOC. 2009, 131, 12554–12555.
    40. Andrew Fairbrother, Eric García-Hemme, Victor Izquierdo-Roca, Xavier Fontané, Fabián A. Pulgarín-Agudelo, Osvaldo Vigil-Galán,Alejandro Pérez-Rodríguez and Edgardo Saucedo, Development of a selective chemical etch to improve the conversion efficiency of Zn-rich Cu2ZnSnS4 solar cells. J Am Chem Soc, 2012. 134(19): p. 8018-21.
    41. Aswani Yella, Hsuan-Wei Lee, Hoi Nok Tsao, Chenyi Yi, Aravind Kumar Chandiran, Md.Khaja Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel,Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011. 334(6056): p. 629-34.
    42. Xukai Xin, Ming He, Wei Han, Jaehan Jung, and Zhiqun Lin, Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed Engl, 2011. 50(49): p. 11739-42.
    43. Jun Xu, Xia Yang, Qing-Dan Yang, Tai-Lun Wong, and Chun-Sing Lee, Cu2ZnSnS4Hierarchical Microspheres as an Effective Counter Electrode Material for Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry C, 2012. 116(37): p. 19718-19723.
    44. Octavi E. Semonin, Joseph M. Luther, Sukgeun Choi, Hsiang-Yu Chen, Jianbo Gao, Arthur J. Nozik, Matthew C. Beard, Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011. 334(6062): p. 1530-1533.
    45. Ankur Khare, Andrew W. Wills, Lauren M. Ammerman, David J. Norrisz and
    Eray S. Aydil, Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem Commun (Camb), 2011. 47(42): p. 11721-3.
    46. Haoran Yang, Luis A. Jauregui, Genqiang Zhang, Yong P. Chen and Yue Wu, Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett, 2012. 12(2): p. 540-545.
    47. Maria Iba ́n ̃ez, Reza Zamani, Aaron LaLonde, Doris Cadavid, Wenhua Li, Alexey Shavel, Jordi Arbiol, Joan Ramon Morante,Ste ́phane Gorsse,G. Jeffrey Snyder and Andreu Cabot, Cu2ZnGeSe4 nanocrystals: synthesis and thermoelectric properties. J Am Chem Soc, 2012. 134(9): p. 4060-4063.
    48. Alexey Shavel, Jordi Arbiol and Andreu Cabot ,Synthesis of Quaternary Chalcogenide Nanocrystals Stannite CZTSe., J. AM. CHEM. SOC. 2010, 132, 4514–4515.
    49. Keng-Liang Ou, Jian-Cin Fan, Jem-Kun Chen, Chih-Ching Huang, Liang-Yih Chen, Jinn-Hsuan Ho and Jia-Yaw Chang, Hot-injection synthesis of monodispersed Cu2ZnSn(SxSe1−x)4 nanocrystals: tunable composition and optical properties. Journal of Materials Chemistry, 2012. 22(29): p. 14667.
    50. Grayson M. Ford, Qijie Guo, Rakesh Agrawal and Hugh W. Hillhouse, Earth Abundant Element Cu2Zn(Sn1−xGex)S4Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication. Chemistry of Materials, 2011. 23(10): p. 2626-2629.
    51. Maria Iba ́n ̃ez, Reza Zamani, Wenhua Li, Alexey Shavel, Jordi Arbiol, Joan Ramon Morante and andreu Cabot, Extending the Nanocrystal Synthesis Control to Quaternary Compositions. Crystal Growth & Design, 2012. 12(3): p. 1085-1090.
    52. Liang Shi, Congjian Pei, Yeming Xu and Quan Li, Template-directed synthesis of ordered single-crystalline nanowires arrays of Cu2ZnSnS4 and Cu2ZnSnSe4. J Am Chem Soc, 2011. 133(27): p. 10328-31.
    53. Ajay Singh, Hugh Geaney, Fathima Laffir and Kevin M. Ryan, Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc, 2012. 134(6): p. 2910-3.
    54. Wan-Ching Hsu, Brion Bob, Wenbing Yang, Choong-Heui Chung and Yang Yang, Reaction pathways for the formation of Cu2ZnSn(Se,S)4 absorber materials from liquid-phase hydrazine-based precursor inks. Energy & Environmental Science, 2012. 5(9): p. 8564.
    55. Chien-Hsin Ho, Chih-Pin Tsai, Chia-Chi Chung, Chun-Ying Tsai, Fu-Rong Chen, Hong-Ji Lin and Chih-Huang Lai, Shape-Controlled Growth and Shape-Dependent Cation Site Occupancy of Monodisperse Fe3O4Nanoparticles. Chemistry of Materials, 2011. 23(7): p. 1753-1760.
    56. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. Journal of Alloys and Compounds, 2011. 509(28): p. 7600-7606.
    57. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 2009. 517(7): p. 2519-2523.
    58. Thomas Rath, Wernfried Haas, Andreas Pein, Robert Saf, Eugen Maier, Birgit Kunert, Ferdinand Hofer, Roland Resel, Gregor Trimmel, Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: Influence of reactants on the chemical composition. Solar Energy Materials and Solar Cells, 2012. 101: p. 87-94.
    59. Yin, Y. and A.P. Alivisatos, Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005. 437(7059): p. 664-70.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE