研究生: |
黃凱伶 |
---|---|
論文名稱: |
針對建立於藍芽4.0之動作辨識應用之電源管理方法 Power Management for Motion Applications Based on Bluetooth 4.0 Low Energy Technology |
指導教授: | 周百祥 |
口試委員: |
蔡明哲
陳耀宗 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 動作辨識 、低功耗 、可穿戴式裝置 、電源管理 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用可穿戴式的感測器做動作辨識的應用中,功率消耗一直是一個很大的挑戰。常為了節省功率的消耗,而造成系統的敏感度(sensitivity)、特異性(specificity)降低和延遲時間(latency)增加。因此,在此論文中,我們針對動作辨識這一類型的應用,提出了一個全新的動作辨識方法,此動作辨識方法解決了以往會因不同使用者而辨識率降低的問題,並針對此動作辨識方法,我們提出了三個電源管理的方法。第一個方法是階層式滯後性閾值(tiered hysteretic threshold),此方法能讓系統在未使用時進入低階省電模式,但當系統利用硬體偵測到動作時,又會調整到高階模式,以維持一定的敏感度和特異性。但有鑒於第一個方法的閾值都是事先經由開發者先定義好,無法適用於每個不同的使用者,因此我們提出第二個電源管理方法名為自適應式閾值(adaptive threshold)。最後,由於不同的無線傳輸協定會影響功率的消耗,因此在第三個電源管理中,我們提出使用藍芽4.0低功耗,並找出對此類型應用最佳的幾個藍芽4.0低功耗的參數。經由實驗驗證,此動作辨識方法精準度相當高,並且這三個電源管理方法確實為我們系統省下高達70%的耗電量。
Power consumption is one of the most challenging aspects in designing wearable sensors for motion tracking, as power must be saved without sacrificing sensitivity, specificity, and latency. In this thesis, we propose a vertical suite of techniques for building power-efficient wearable motion sensing systems. First, we propose a new motion recognition method based on edit distance, which is able to recognize each action over a wide range of motion amplitudes while lending itself to power management techniques at other levels. Of the three power management methods we propose for prolonging the battery life, the first is tiered hysteretic threshold, which increases sensitivity at the lower tier to
wake up the next higher tier only when it deems necessary. Thus, the second power management method is adaptive thresholds, which adjusts the threshold levels automatically over time to adapt to the specific users. The third power management method exploits specific features of the wireless
protocol, Bluetooth 4.0 Low Energy Technology (BLE), in integrating our tiered hysteretic and adaptive thresholding techniques to make our system energy-efficient while being directly compatible with smartmobiles without the high Rx power during idle listening. Experimental results validate
the ability to recognize motions with high accuracy. These three power management methods help motion application reduce power consumption, thereby enhancing the wearability of our body sensor systems.
Bibliography
[1] ANT+. http://www.thisisant.com/.
[2] Bluetooth Low Energy. http://www.bluetooth.com/Pages/low-energy.aspx.
[3] Nintendo Wii. http://www.nintendo.com/wii.
[4] Python Programming Language a˛V Official Website. http://www.python.org.
[5] Silicon Laboratories. http://www.ember.com.
[6] ST Microelectronics. http://www.st.com.
[7] ZigBee. http://www.zigbee.org/.
[8] APPLE. Apple Inc. http://www.apple.com/.
[9] AGRAWAL, S., CONSTANDACHE, I., GAONKAR, S., ROY CHOUDHURY, R., CAVES, K., AND
DERUYTER, F. Using mobile phones to write in air. In Proceedings of the 9th international
conference on Mobile systems, applications, and services (2011), ACM, pp. 15–28.
[10] BENOCCI, M., TACCONI, C., FARELLA, E., BENINI, L., CHIARI, L., AND VANZAGO, L.
Accelerometer-based fall detection using optimized zigbee data streaming. Microelectronics
Journal 41, 11 (2010), 703–710.
[11] BILLON, R., NÉDÉLEC, A., AND TISSEAU, J. Gesture recognition in flow based on pca analysis
using multiagent system. In Proceedings of the 2008 International Conference on Advances
in Computer Entertainment Technology (2008), ACM, pp. 139–146.
[12] BOURKE, A., AND LYONS, G. A threshold-based fall-detection algorithm using a bi-axial
gyroscope sensor. Medical Engineering and Physics 30, 1 (2008), 84.
[13] BOURKE, A., VAN DE VEN, P., GAMBLE, M., O’CONNOR, R., MURPHY, K., BOGAN,
E., MCQUADE, E., FINUCANE, P., OLAIGHIN, G., AND NELSON, J. Evaluation of waistmounted
tri-axial accelerometer based fall-detection algorithms during scripted and continuous
unscripted activities. Journal of biomechanics 43, 15 (2010), 3051–3057.
[14] BOUWSTRA, S., FEIJS, L., CHEN, W., AND OETOMO, S. B. Smart jacket design for neonatal
monitoring with wearable sensors. In Wearable and Implantable Body Sensor Networks, 2009.
BSN 2009. Sixth International Workshop on (2009), IEEE, pp. 162–167.
[15] BRASHEAR, H., STARNER, T., LUKOWICZ, P., AND JUNKER, H. Using multiple sensors for
mobile sign language recognition.
[16] CALDEIRA, J. M., RODRIGUES, J. J., AND LORENZ, P. Toward ubiquitous mobility solutions
for body sensor networks on healthcare. Communications Magazine, IEEE 50, 5 (2012), 108–
115.
[17] CHUNG, W.-Y., LEE, Y.-D., AND JUNG, S.-J. A wireless sensor network compatible wearable
u-healthcare monitoring system using integrated ecg, accelerometer and spo< inf> 2</inf>. In
Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE (2008), IEEE, pp. 1529–1532.
[18] JAFARI, R., AND LOTFIAN, R. A low power wake-up circuitry based on dynamic time warping
for body sensor networks. In Body Sensor Networks (BSN), 2011 International Conference on
(2011), IEEE, pp. 83–88.
[19] KOSMIDOU, V. E., AND HADJILEONTIADIS, L. J. Sign language recognition using intrinsicmode
sample entropy on semg and accelerometer data. Biomedical Engineering, IEEE Transactions
on 56, 12 (2009), 2879–2890.
[20] LI, H., AND TAN, J. An ultra-low-power medium access control protocol for body sensor
network. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual
International Conference of the (2005), IEEE, pp. 2451–2454.
[21] LIU, J., ZHONG, L., WICKRAMASURIYA, J., AND VASUDEVAN, V. uwave: Accelerometerbased
personalized gesture recognition and its applications. Pervasive and Mobile Computing
5, 6 (2009), 657–675.
[22] LU, C. W., LU, C. L., AND LEE, R. A new filtration method and a hybrid strategy for approximate
string matching. Theoretical Computer Science 481 (2013), 9–17.
[23] MUSCILLO, R., CONFORTO, S., SCHMID, M., CASELLI, P., AND D’ALESSIO, T. Classification
of motor activities through derivative dynamic time warping applied on accelerometer data.
In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International
Conference of the IEEE (2007), IEEE, pp. 4930–4933.
[24] MYERS, C. S. A comparative study of several dynamic time warping algorithms for speech
recognition. PhD thesis, Massachusetts Institute of Technology, 1980.
[25] NAVARRO, G. A guided tour to approximate string matching. ACM computing surveys (CSUR)
33, 1 (2001), 31–88.
[26] NEEDLEMAN, S. B., AND WUNSCH, C. D. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology 48, 3
(1970), 443–453.
[27] OTTO, C., MILENKOVIC, A., SANDERS, C., AND JOVANOV, E. System architecture of a wireless
body area sensor network for ubiquitous health monitoring. Journal of Mobile Multimedia
1, 4 (2006), 307–326.
[28] SELLERS, P. H. The theory and computation of evolutionary distances: pattern recognition.
Journal of algorithms 1, 4 (1980), 359–373.
[29] STMICROELECTRONICS. MEMS motion sensor: Ultra low power high performance 3-
axis digital accelerometer. http://www.st.com/st-web-ui/static/active/en/resource/
technical/document/datasheet/CD00213470.pdf.
[30] TEXAS INSTRUMENTS. 2.4-GHz Bluetooth low energy System-on-Chip. http://www.ti.
com/lit/ds/symlink/cc2540.pdf, November 2012.
[31] WAGNER, R. A., AND FISCHER, M. J. The string-to-string correction problem. Journal of the
ACM (JACM) 21, 1 (1974), 168–173.
[32] YANG, S.-Y. Ecoslend: A power management framework for ultra-compact wireless sensor
platforms.
[33] ZAPPI, P., LOMBRISER, C., STIEFMEIER, T., FARELLA, E., ROGGEN, D., BENINI, L., AND
TROSTER, G. Activity recognition from on-body sensors: Accuracy-power trade-off by dynamic
sensor selection. In EUROPEAN CONFERENCE ON WIRELESS SENSOR NETWORKS
(2008), Springer-Verlag, pp. 17–33.