研究生: |
廖秉彥 |
---|---|
論文名稱: |
利用晶種還原法製備銀奈米粒子研究 |
指導教授: | 林滄浪 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 晶種還原法 、銀奈米平板 、銀奈米棒 、銀奈米線 、銀奈米立方體 |
外文關鍵詞: | Seed-mediated growth method, Silver nanoplates, Silver nanorods, Silver nanowires, Silver nanocubes |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為利用晶種還原法(seed-mediate growth method)製備銀奈米結構粒子。製備方式主要分為兩個主要步驟,第一步先製備3~5 nm之銀奈米粒子作為晶種,第二步再將晶種加入成長液中當作聚集點反應成長。晶種製備主要用含包覆劑(AOT)與銀離子(AgNO3)之溶液,加入強還原劑NaBH4還原形成銀奈米顆粒;成長液則包含銀離子、弱還原劑(L-ascorbic acid)與界面活性劑(CTAB),最後加入NaOH調整溶液酸鹼值。研究中主要以紫外-可見光光譜與掃描式電子顯微鏡探討分析改變反應參數對產物的影響。研究結果發,晶種還原法所得產物的形貌大小分佈不均勻,主要產物為三角形、六角形奈米平板與部分奈米棒(依實驗條件不同則比例不同)。晶種添加量的減少會使得光譜呈現紅位移且產物中出現較多且長寬比(aspect ratio)較大之銀奈米棒;反應溫度的升高也會使得產物奈米棒的長寬比變小;NaOH的添加量則存在兩個臨界值,第一是趨動成長反應的臨界值,第二則是形成奈米棒與奈米線的臨界值;成長液中CTAB濃度則在晶種添加量較少時會有較明顯之影響,CTAB濃度過低,則會形成不規則形狀之奈米顆粒,而結果中也看到某些低濃度CTAB條件下(約低於20 mM)會有少數微米大小之立方體的形成。另外,我們也探討了利用加熱過之晶種做成長反應,結果發現會成長出尺度相當大之奈米平板。
In this study, silver nanoparticles were synthesized by seed-mediated growth method, following the procedures described by Jana et al. In seed-mediated growth method, it starts with the synthesis of silver nano-seeds using chemical reduction of a silver salt with a strong reducing agent such as sodium borohydride in the presence of AOT as a capping agent to prevent particle growth. The synthesized silver nano-seeds are 3~5 nm in diameter and served as the seeds to grow more anisotropic nanostructures. These silver nano-seeds were added in the growth solution containing more silver salt, ascorbic acid (weak reducing agent) and cetyltrimethylammonium bromide (CTAB). The effects of various processing parameters on the morphology and uniformity of silver nanoparticles were investigated by UV-Vis spectroscopy and scanning electron microscopy. Preparation of silver nanoparticles by seed-mediated methods generally yielded a wide range of sizes and morphologies. At lower nano-seed concentration, longer silver nanorods can be produced. Increase the reaction temperature led to a decrease of aspect ratio of nanorods. When the pH of solution was increased by adding NaOH, the reducing power of ascorbic acid was increased. The high pH of the reaction solution caused short nanorods to form and the low pH might induce the formation of longer nanowires. But if the pH is too low, silver ions will not be reduced. The concentration of CTAB also has significant effect for low seed concentration cases. When the concentration of CTAB was vary law (a few mM), small irregular silver nanoparticles would be synthesized. Few cubic particles of micron size were synthesized at CTAB concentrations around 20 mM. On the other hand, nano-seeds annealed at higher temperature were also used and quite large silver nanoplates were synthesized.
1.D.M.-K. Lam ,B.W. Rossiter , Sci. Am. 1991, 265 , 80
2.L.N. Lewis, Chem. Rev. 1993, 93, 2693
3.S.R. Nicewarner-pena et al., Science 2001, 294, 137
4.S.A. Maier et al. , Adv. Mater. 2001, 13, 1501
5.P.V. kamat, J. phys. Chem. B, 2002, 106, 7729
6.M.-P. Pileni, Adv. Funct. Mater. 2001, 11, 323
7.R. Elghanian, J.J. Storhoff et al., Science 1997, 277, 1078
8.V.I. Klimov, A.A. Mikhailovsky et al., Science 2000, 290, 314
9.(a) Prokes, S.M.,Wang K.L. MRS Bull. 1999, 24(8), 13 (b) Cui, Y. , Wei. Q. , Park. H. , Lieber, C.M. , Science 2001, 293 , 1289
10.Andrea Tao et al., Nano Letters 2000, Vol. 3 , No. 9 , 1229
11.Y. Xia et al., Adv. Mater. 2003, 15, 353
12.N.R. Jana et al., Langmuir 2002, 18, 922
13.J.P. Kottmann et al., Phys. Rev. B 2001, 64, 235402
14.Z.L. Wang et al., Surf. Sci. 1997, 380, 302
15.R.J. Chimentao et al., Chem. Commun. 2004, 7, 846
16.N.I. Kovtyukhova and et al., Chem. Eur. J. 2002, 8, 4354
17.L.A. Dick et al., J. Phys. Chem. B 2002, 106, 853
18.U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster (Springer-Verlag, New York, 1995)
19.K.L. Kelly et al., J. Phys. Chem. B 2003, 107, 668
20.R. Jin et al., Science 2001, 294, 1901
21.L. Hirsch et al., Proc. Natl. Acad. Sci. U.S.A 2003, 100, 13549
22.Yugang Sun, Younan Xia et al. , Chem. Mater. 2002, 14, 4736-4745
23.Yugang Sun and Younan Xia, Adv. Mater. 2002, 14, No. 11, June 5
24.Yugang Sun, Younan Xia et al. , Nano Letters, 2003, Vol. 3, No. 7, 955-960
25.Yugang Sun, Younan Xia, Science, 2002, Vol. 298, 2176
26.Benjamin Wiley et al., Nano Letters, 2004, Vol. 4, No. 9, 1733-1739
27.Rongchao Jin, YunWei Cao et al., Science, 2001, Vol. 294, 1901-1903
28.Franklin Kim et al., J. Am. Chem. Soc. 2002, 124, 14316-14317
29.Mathieu Maillard et al., Nano Letters, 2003, Vol. 3, No. 11, 1611
30.A. Callegari et al., Nano Letters, 2003, Vol. 3, No. 11, 1565-1568
31.Rongchao Jin, YunWei Cao et al., Nature 2003, 425, 487-490
32.Catherine J. Murphy, Nikhil R. Jana, Adv. Mater. 2002, 14, No. 1, 80-82
33.Nikhil R. Jana et al., J. Phys. Chem. B 2001, 105, 4065-4067
34.Nikhil R. Jana et al., Adv. Mater. 2001, 13, No. 18, 1389-1393
35.Sihai Chen, David L. Carroll, Nano Letters, 2002, Vol. 2, No. 9, 1003-1007
36.Sihai Chen et al., J. Phys. Chem. B 2002, Vol. 106, No. 42, 10777-10781
37.Gil-Jae Lee et al., Materials Chemistry and Physics 2004, 84, 197-204
38.Anand Gole and Catherine J. Murphy, Chem. Mater. 2004, 16, 3633-3640
39.Heinz-Helmut Perkampus, UV-VIS Spectroscopy and Its Applications, page 3, (Springer-Verlag Berlin Heidelberg 1992)
40.張士欣、王崇仁,“金屬奈米粒子的吸收光譜”,1999, Vol.56 ,No.3 ,P.209~222.
41.李言榮、渾正中、張勁燕,“材料物理學概論”,2003,P.162~P.164.
42.Nikhil R. Jana et al., Chem. Commun. 2001, 617-618