簡易檢索 / 詳目顯示

研究生: 張嘉倩
Chia-Chien Chang
論文名稱: 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
Hydrothermal Synthesis of Octahedral Gold Nanocrystals and The Effects of Metal Ions on Their Morphological Transformation
指導教授: 黃暄益
Michael Hsuan-Yi Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 77
中文關鍵詞: 金奈米八面體欠電位沉積形狀改變截角八面體金奈米棒
外文關鍵詞: octahedral gold nanocrystal, underpotential deposition, morphological transformation, truncated octahedra, gold nanorod
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文包含兩個主題,第一個部分主要是用簡單的水熱法在110 °C下合成出金奈米八面體,以氯金酸(HAuCl4)當作金的來源,檸檬酸鈉(trisodium citrate)當作還原劑,十六烷基三甲基溴化胺(cetyltrimethylammonium bromide)當作界面活性劑並且控制形狀的產生,反應6小時後,可以產生大約30 nm的金奈米八面體。藉由控制反應時間由6小時增加到72小時,我們可以生成出五種不同大小的金奈米八面體,而且每一個合成出來的產物具有相當窄的大小分佈情形。當反應時間增加,合成出來的金八面體大小會隨之增大,可見光紫外光吸收光譜也顯示不同膠體溶液吸收峰的位置會隨著晶體的大小變大而有紅位移的現象。當這些合成出來的膠體溶液在矽晶片上自然乾燥後,可以發現它們有很好的自組裝排列現象。這些金八面體的多層排列可藉由其三角面、邊、或尖角等三種模式沉積於基板上。這些自組裝的晶體結構導致晶體之間會有電漿偶合的現象進而造成近紅外光帶的吸收。
    論文的第二部分主要是承接第一部份,將反應時間控制在24小時,並且在反應系統內加入不同濃度的硝酸銀(AgNO3)水溶液,使反應出來的晶體結構具有不同的形狀變化。這個現象發生的主要原因是因為銀的欠電位沉積(underpotential deposition)在金奈米晶體表面,導致金奈米晶體能量較高的{110}還有{100}面的生長速度被抑制,使得原本應該生成的金八面體轉變為截角八面體,截角的截半立方體,以及金奈米棒。隨著加入的AgNO3濃度增加,合成出來的晶體尖角部分會被截掉,又因為{110}面被抑制生長,而導致最後合成出不同形狀的產物。粉末X光繞射光譜的鑑定結果也顯示,隨著加入的AgNO3濃度增加,{110}還有{100}繞射峰相對強度隨之增加,符合掃描式電子顯微鏡以及穿透式電子顯微鏡的鑑定結果。這些不同形狀的奈米晶體均展現了不同的光學性質,而可以被應用在生醫檢測以及表面光譜的鑑定上。


    01 論文中英文封面 02 中英文摘要、謝誌與目錄 Abstract of The Thesis i Acknowledgement v Table of contents vi List of Figures viii List of Tables xiii List of Schemes xiv 03 正文 CHAPTER 1 A SURVEY ON THE SYNTHESIS OF POLYHEDRAL GOLD NANOCRYSTALS 1.1 Introduction 1 1.2 Methods of Synthesis of Gold Nanocrystals 4 1.2.1 Seed-Mediated Growth Method 4 1.2.2 Polyol Synthesis of Gold Nanocrystals 6 1.2.3 Hydrothermal Process 8 1.3 Size- and Shape-Dependent Properties of Gold  Nanocrystals 10 1.4 Investigation of Octahedral Gold Nanocrystals 15 1.4.1 Synthesis of Octahedral Gold Nanocrystals by Thermal Decomposition of Metal-Loaded Polymer Films 15 1.4.2 Synthesis of Octahedral Gold Nanocrystals in a Water/PVP/n-Pentanol (WPN) System 19 1.4.3 Synthesis of Octahedral Gold Nanocrystals by a Modified Polyol Process 21 1.5 Self-Assembly of Nanocrystals 26 1.6 References 28 CHAPTER 2  HYDROTHERMAL SYNTHESIS OF OCTAHEDRAL GOLD NANOCRYSTALS AND THEIR SELF-ASSEMBLED STRUCTURES 2.1 Introduction 31 2.2 Experimental Section 33 2.2.1 Chemicals 33 2.2.2 Preparation of Octahedral Gold Nanocrystals with Size Control 33 2.2.3 Characterization of Gold Nanocrystals 34 2.3 Results and Discussion 36 2.4 Conclusion 56 2.5 References 57 CHAPTER 3 HYDROTHERMAL SYNTHESIS OF OCTAHEDRAL GOLD NANOCRYSTALS AND THE EFFECTS OF METAL IONS ON THEIR MORPHOLOGICAL TRANSFORMATION 3.1 Introduction 60 3.2 Experimental Section 61 3.2.1 Chemicals 61 3.2.2 Preparation of Octahedral Gold Nanocrystals with Morphological Transformation 62 3.2.3 Characterization of Gold Nanocrystals 63 3.3 Results and Discussion 64 3.4 Conclusion 76 3.5 References 78

    CHAPTER 1 A SURVEY ON THE SYNTHESIS OF POLYHEDRAL GOLD NANOCRYSTALS

    (1) Eustis, S.; El-Sayed, M. A. Chem. Soc. Re. 2006, 35, 209.
    (2) Mock, J. J.; Barbic M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys. 2002, 116, 6755.
    (3) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
    (4) 吳民耀; 劉威志. 物理雙月刊 2006, 2, 486.
    (5) Mie, G. Ann. Phys. 1908, 25, 377.
    (6) Hao, E.; Schatz, G.; Hupp, J. J. Fluorese. 2004, 14, 331.
    (7) Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z.-Y.; Li, X.; Xia, Y. MRS Bulletin
    2005, 30, 356.
    (8) Li, C.; Cai, W.; Cao, B.; Sun, F.; Li, Y.; Kan, C.; Zhang, L. Adv. Funct.
    Mater. 2006, 16, 83.
    (9) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.;
    Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857.
    (10) Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Angew. Chem. Int. Ed.
    2004, 43, 3673.
    (11) Seo, D.; Park. J. C.; Song, H. J. Am. Chem. Soc. 2006, 128, 14863.
    (12) Katz, E.; Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042.
    (13) Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647.
    (14) Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requichia, A. A. G.;
    Atwater, H. Adv. Mater. 2001, 13, 1501.
    (15) Tkachenka, A. G.; Xie, H.; Coleman, D.; Glomm, W.; Ryan, J.; Anderson, M. F.;
    Franzen, S.; Feldhelim, D. L. J. Am. Chem. Soc. 2003, 125, 4700.
    (16) Lee, K.-S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 19220
    (17) Kwon, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W. J. Phys. Chem. C 2007, 111, 1161
    (18) Pileni, M. P. J. Phys. Chem. B 2001, 105, 3358.
    (19) Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers,
    J. A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494.
    (20) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater.
    2005, 17, 6447.
    (21) Murphy, C. J.; Jana, N. R. Adv. Mater. 2002, 19, 9065.
    (22) Sun, Y.; Xia, Y. Science 2002, 298, 2176.
    (23) Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153.
    (24) Xu, J.; Li, S.; Weng, J.; Wang, X.; Zhou, Z.; Yang, K.; Liu, M.; Chen, X.; Cui,
    Q.; Cao, M.; Zhang, Q. Adv. Funct. Mater. 2008, 18, 277.
    (25) Klabunde, J. K. Nanoscale Materials in Chemistry; Wiley Interscience:
    New York, 2001.
    (26) Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H. Angew. Chem. Int. Ed. 2008, 47, 763.
    (27) Henzie, J.; Kwak, E.-S.; Odom, T. W. Nano. Lett. 2005, 5, 1199.
    (28) Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. J. Am.
    Chem. Soc. 2005, 127, 17118.
    (29) Vakarelski, I. U.; Higashitani, K. Langmuir 2006, 22, 2931.
    (30) Zhang, J. Z.; Gao, Y.; Alvarez-Puebla, R. A.; Buriak, J. M.; Fenniri, H. Adv.
    Mater. 2006, 18, 3233.
    (31) Zhang, J.; Liu, H.; Wang, Z. Ming, N. Appl. Phys. Lett. 2007, 90, 163122.
    (32) Li, C.; Shuford, K. L.; Park, Q. H.; Cai, W.; Li, Y.; Lee, E. J.; Cho, S. O. Angew.
    Chem. Int. Ed. 2007, 46, 3264.
    (33) Huang, X-J.; Li, C.-C.; Gu, B.; Kim, J.-h.; Cho, S.-O.; Choi, Y.-K. J. Phys.Chem.
    C 2008, 112, 3605.
    (34) Tao, A.; Sinsermsuksakul, P.; Yang, P. Nature Nanotechnology 2007, 2, 435.

    CHAPTER 2 Hydrothermal Synthesis of Octahedral Gold Nanocrystals and Their Self-Assembled Structures

    (1) Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. J. Chem. Phys. ae2002, 116, 6755.
    (2) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
    (3) 吳民耀; 劉威志. 物理雙月刊 2006, 2, 486.
    (4) Tao, A.; Sinsermsuksakul, P.; Yang, P. Nature Nanotechnology, 2007, 2, 435.
    (5) Huang, X.-J.; Li, C.-C.; Gu, B.; Kim, J.-h.; Cho, S.-O.; Choi, Y.-K. J. Phys. Chem.
    C 2008, 112, 3605.
    (6) Kwon, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W. J. Phys. Chem. C. 2007, 111, 1161
    (7) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater.
    2005, 17, 6447.
    (8) Chu, H.-C.; Kuo, C.-H.; and Huang, M. H. Inorg. Chem. 2006, 45, 808.
    (9) Kuo, C.-H.; Huang, M. H. Langmuir 2005, 21, 2012.
    (10) Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Angew. Chem. Int. Ed.
    2004, 43, 3673.
    (11) Zhang, J. Z.; Gao, Y.; Alvarez-Puebla, R. A.; Buriak, J. M.; Fenniri, H. Adv.
    Mater. 2006, 18, 3233.
    (12) Zhang, J.; Liu, H.; Wang, Z.; Ming, N. Appl. Phys. Lett. 2007, 90, 163122.
    (13) Li, C.; Shuford, K. L.; Park, Q. H.; Cai, W.; Li, Y.; Lee, E. J.; Cho, S. O. Angew.
    Chem. Int. Ed. 2007, 46, 3264.
    (14) Sun, S.; Murray, C. B. J. Appl. Phys. 1999, 8, 15.
    (15) Song, Q.; Ding, Y.; Wang, Z. L.; Zhang, Z. J. J. Phys. Chem. B. 2006, 110,
    25547.
    (16) Lu, W.; Liu, Q.; Sun, Z.; He, J.; Ezeolu, C.; Fang, J. J. Am. Chem. Soc. 2008,
    130, 6983.
    (17) Tao, A. R.; Sinsermsuksakul, P.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 4597.

    CHAPTER 3 Hydrothermal Synthesis of Octahedral Gold Nanocrystals and The Effects of Metal Ions on Their Morphological Transformation

    (1) Tao, A.; Sinsermsuksakul, P.; Yang, P. Nature Nanotechnology, 2007, 2, 435.
    (2) Huang, X.-J.; Li, C.-C.; Gu, B.; Kim, J.-h.; Cho, S.-O.; Choi, Y.-K. J. Phys. Chem. C 2008, 112, 3605.
    (3) Kwon, K.; Lee, K. Y.; Lee, Y. W.; Kim, M.; Heo, J.; Ahn, S. J.; Han, S. W. J. Phys. Chem. C. 2007, 111, 1161
    (4) Sau, T. K.; Murphy, C. J. J. Am. Chem. Soc. 2004, 126, 8648.
    (5) Smith, D.; Korgel, B. A. Langmuir 2008, 24, 644.
    (6) Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
    (7) Ha, T. H.; Koo, H. J.; Chung, B. H. J. Phys. Chem. C. 2007, 111, 1123.
    (8) Xia, Y. N.; Halas, N. J. MRS Bull. 2005, 30, 338.
    (9) Wang, Z. L.; Gao, R. P.; Nikoobakht, B.; El-Sayed, M. A. J. Phys. Chem. B 2000, 104, 5417.
    (10) Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem. B. 1997, 101, 6661.
    (11) Wang, Z. L.; Mohamed, M. B.; Link, S.; El-Sayed, M. A. Surf. Sci. 1999, 440, L809.
    (12) Wu, H.-Y.; Chu, H.-C.; Kuo, T.-J.; Kuo, C.-L.; Huang, M. H. Chem. Mater. 2005, 17, 6447.
    (13) Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H. Angew. Chem. Int. Ed. 2008, 47, 763.
    (14) Pérez-Juste, J.; Liz-Marzán, L. M.; Carnie, S.; Carnie, D. Y. C.; Mulvaney, P. Adv. Fun. Mater. 2004, 14, 571.
    (15) Seo, D.; Park, J. C.; Song, H. J. Am. Chem. Soc. 2006, 128, 14863.
    (16) Xiong, Y.; Cai, H.; Wiley, B. J.; Wang, J.; Kim, M. J.; Xia, Y. J. Am. Chem. Soc. 2007, 129, 3665.
    (17) Kolb, D. M. Advances in electrochemistry and electrochemical engineering; Wiley: New York, 1978.
    (18) Herrero, E.; Buller, L. J.; Abruna, H. D. Chem. Rev. 2001, 101, 1897.
    (19) Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B. 2005, 109, 22192.
    (20) Kolb, D. M.; Przasnyski, M.; Gerischer, H. J. Electroanal. Chem. 1974, 54, 25.
    (21) Rogers, L. B.; Krause, D. P.; Griess, J. C.; Ehrlinger, D. B. J. Electrochem. Soc. 1949, 95, 33.
    (22) Leiva, E. Electrochem. Acta. 1996, 41, 2185.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE