簡易檢索 / 詳目顯示

研究生: 蔡惠雅
Tsai, Huei-Ya
論文名稱: 利用引證關聯查詢擴展為基礎協助專利先前技術檢索
Using Citation-relatedness-based Relevance Feedback Approach for Supporting Patent Prior Art Retrieval
指導教授: 魏志平
Wei, Chih-Ping
口試委員:
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 科技管理研究所
Institute of Technology Management
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 42
中文關鍵詞: 先前技術檢索專利檢索專利引證關聯相關回饋查詢擴展
外文關鍵詞: Prior Art Retrieval, Patent Search, Citation Relatedness, Relevance Feedback, Query Expansion
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 專利先前技術檢索主要用來辨別一個專利的先前技術,其應用在協助判斷專利的新穎性及侵權檢索。專利為擴大其權利範圍所造就的特殊文體結構是過去檢索研究常面臨的困難之一。在本研究中,我們致力於採用引證的關聯做為專利檢索中查詢擴展的特徵值以增進檢索的效能。我們假設一群具有相同引證的專利,他們在技術領域上是較具關聯的。因此針對欲查詢專利文件,我們先檢索出一些內文相似的專利集合,經過專利集合的引證分析,選出數個專利文件反饋給原查詢專利。我們從USPTO中搜集14,928篇專利並設計一系列的實驗來對全文探勘技術、傳統查詢擴展技術及我們所提出來技術進行比較。經實驗結果顯示我們所提的方法能得到更佳的檢索結果。


    Prior art retrieval refers to the process of identifying relevant prior arts for a given patent (or patent application). Prior art retrieval task is mainly used to support patent validity search or patentability search. Patent applicants often use peculiar or abstract terms to enlarge the legal monopoly scope of patents, which make the prior art retrieval a difficult task. However, existing techniques for prior art retrieval encounter some limitations. In response, we propose the citation-relatedness-based relevance feedback prior art retrieval (CRF-PAR) technique, which incorporates citation information of patents as knowledge source for performing relevance feedback. A hybrid similarity measure which combines text-based and citation-based similarities between patents is proposed to select top-ranked patents for expanding the original query patent. The expanded query patent is then applied to perform prior art retrieval. For empirical evaluation purpose, we collect 14,928 patents documents from the United States Patent and Trademark Office (USPTO) website and conduct a series of experiments using a traditional text-based prior art retrieval and a traditional relevance-feedback-based prior art retrieval as the performance benchmarks. Our evaluation results suggest that our proposed technique outperforms its benchmark techniques, measured by the top-m recall rate.

    LIST OF FIGURES III LIST OF TABLES IV 誌謝辭 V Abstract VI 中文摘要 VII Chapter 1 INTRODUCTION - 1 - 1.1 Background - 1 - 1.2 Research Motivation and Objectives - 3 - 1.3 Organization of the Thesis - 5 - Chapter 2 LITERATURE REVIEW - 6 - 2.1 Text-based Prior Art Retrieval - 6 - 2.2 Citation-based Prior Art Retrieval - 7 - 2.3 IPC-based Retrieval Technique - 8 - 2.4 Relevance Feedback Prior Art Retrieval Technique - 9 - 2.5 Summary-based Prior Art Retrieval Technique - 11 - Chapter 3 DESIGN OF CITATION-RELATEDNESS-BASED RELEVANCE FEEDBACK PRIOR ART RETRIEVAL TECHNIQUE - 13 - 3.1 Initial Retrieval - 14 - 3.2 Citation Analysis - 16 - 3.3 Relevant Patent Selection - 19 - 3.4 Query Expansion - 19 - 3.5 Final Retrieval - 20 - Chapter 4 EMPIRICAL EVALUATION - 22 - 4.1 Data Collection - 22 - 4.2 Performance Benchmark and Evaluation Criteria - 23 - 4.3 Parameter Tuning - 24 - 4.3.1 Tuning Results of the Text-based Prior Art Retrieval (T-PAR) Technique - 26 - 4.3.2 Tuning Results of the Relevance Feedback Prior Art Retrieval (RF-PAR) Technique - 27 - 4.3.3 Tuning Results of the Citation-relatedness-based Relevance Feedback Prior Art Retrieval (CRF-PAR) Technique - 28 - 4.4 Comparative Evaluation Results - 33 - Chapter 5 CONCLUSION AND FUTURE RESEARCH DIRECTIONS - 39 - 5.1 Conclusion - 39 - 5.2 Future Research Directions - 39 -

    Alcacer, J. and Gittelman, M. “How Do I Know What You Know? Patent Examiners and the Generation of Patent Citations,” Social Science Research Network, 2004.
    Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval, Boston, MA: Addison Wesley, 1999.
    Brin, S. and Page, L. “The Anatomy of A Large-scale Hypertextual Web Search Engine,” Computer Networks 30(1–7), 1998, pp. 107-117.
    Fujii, A., “Enhancing Patent Retrieval by Citation Analysis,” Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Amsterdam, Netherlands, 2007, pp. 793-794.
    Fujita, S., “Technology Survey and Invalidity Search: A Comparative Study of Different Tasks for Japanese Patent Document Retrieval,” Information Processing and Management (43:5), September 2007, pp. 1154-1172.
    Ganesan, P., Garcia-Molina, H., and Widom, J., “Exploiting Hierarchical Domain Structure to Compute Similarity,” ACM Transactions on Information Systems (21:1), January 2003, pp. 64-93.
    Iwayama, M., Fuji, A., Kando, N., and Takano, A., “Overview of Patent Retrieval Task at NTCIR-3,” Proceedings of the Third NTCIR Workshop, 2002.
    Lafferty, J. and Zhai, C., “Document Language Models, Query Models, and Risk Minimization for Information Retrieval,” Proceedings of the 2001 ACM SIGIR Conference on Research and Development in Information Retrieval, 2001, New Orleans, LA, pp. 111-119.
    Lai, K. K. and Wu, S. J., “Using the Patent Co-citation Approach to Establish A New Patent Classification System,” Information Processing and Management (41:2), March 2005, pp. 313-330.
    Lee, S., Yoon, B., Lee, C. and Park J. “Business Planning Based on Technological Capabilities: Patent Analysis for Technology-driven Roadmapping,” Technological Forecasting & Social Change, 2009, pp. 769-786.
    Rocchio, J., “Relevance Feedback in Information Retrieval,” In The SMART Retrieval System: Experiments in Automatic Document Processing, G. Salton, Ed. Prentice-Hall, Englewood Cliffs, NJ, pp. 313-323.
    Shinmori, A., Okumura M., Marukawa Y., and Iwayama M.. “Patent Claim Processing for Readability - Structure Analysis and Term Explanation,” Proceedings of the Wrokshop on Patent Corpus Processing (ACL 2003 Post-Conference Workshop), 2003, pp. 56-65.
    Takeuchi, H., Uramoto, N., and Takeda, K., “Experiments on Patent Retrieval at NTCIR-4 Workshop,” Proceedings of the Fourth NII Test Collection for IR Systems (NTCIR-4) Workshop, Tokyo, Japan, July 2004.
    USPTO, Manual of Patent Examining Procedure, 8th Ed., August 2001.
    Wei, C.P., Yu, C.C. and Yang, C.S., “Use of Text Summarization Technique for Supporting Patent Prior Art Retrieval, Working Paper, National Tsing Hua University, Taiwan, 2008.
    Zhai, C. and Lafferty, J., “Model-based Feedback in the KL-divergence Retrieval Model,” Proceedings of the Tenth International Conference on Information and Knowledge Management (CIKM 2001), 2001, Atlanta, GA, pp. 403-410.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE