研究生: |
劉佳明 |
---|---|
論文名稱: |
正溫度係數高分子複合導電膜之研究-奈米銀粒子/聚亞醯胺混成系統 |
指導教授: | 金惟國教授 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 聚亞醯胺 、正溫度係數 、複合導電膜 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用奈米銀粒子參混在不同類型聚醯胺酸溶液,以括膜的方式製備具有正溫度係數電阻特性的複合電阻膜。藉由觀察各種不同組成的複合電阻膜之電阻值─溫度曲線,了解PTC轉移行為的作用機制。
奈米銀粒子先經XRD、EDX確定表面沒有氧化物,經超音波震盪稍為解決聚集問題後,再經SEM觀察,平均粒徑約為100~200奈米。高分子基材則選用ODA/PMDA及杜邦公司所提供ODPA/HMD半成品,探討此兩種不同熱膨脹系統下之PTC行為。
PTC轉移行為的觀察中發現,複合導電膜的電阻特性及PTC轉移行為與下列因素相關:○1導電粒子填充率;○2基材的熱膨脹係數及Tg前後熱膨脹係數差異;○3升溫歷程及溫度範圍。
1. 李柱雄,“塑膠帶電防止劑的介紹”,觸媒與製程7(1999)p1
2. 張福政,“表面電鍍鎳金屬的高分子粒子應用於環氧樹脂 /壓克力樹脂系薄膜型導電膠之研究”, 清華大學碩士論文, 1999
3. 彭智龍,“環氧樹脂/壓克力樹脂系單向導電性薄膜黏著劑” , 清華大學碩士論文, 1998
4. 陳智明,“表面鍍鎳的微米粒徑高分子之製備及應用在環氧樹脂導電膠中均勻分散之探討”, 清華大學碩士論文, 2000
5. 謝賢德,“壓電性高分子導電複合材料之研究—鍍鎳聚苯乙烯微米粒子/矽酮橡膠混成系統”, 清華大學碩士論文, 2004
6. 徐文凱,“表面鍍銀之空心二氧化矽粒子摻混矽酮橡膠系統之壓阻特性探討”, 清華大學碩士論文, 2005
7. 張繼升,“可撓式正溫度係數高分子電阻薄膜之研究”, 清華大學博士論文, 2005
8. P.W.Haayman, R.W.Dam&H.A.Klasens, GermamPatent, June, 1955, No.929350
9. E.Andrich, Electr.Appl.,v.26,i.3,p123,1965
10. L. Karasek, S. Asai & M. Sumita, Sen-1 Gakkaishi, v.51, n.11, p524, 1995
11. G. R. Cotton, Rubber chemistry and technology, v.58, p774, 1985
12. R. R. Juengel, Rubber world, September, p30, 1985
13. 朱添銘,高分子工業雜誌,十一月號, p46, 1997
14. R. A. Zoppi & M. D. Paoli, Polymer, v. 37, p1999, 1996
15. R. A. Zoppi & M. D. Paoli, Journal of electroanalytical chemistry, v. 437, p175, 1997
16. R. Faez, W. A. Gazotti & M. A. Paoli, polymer, v. 40, p5497, 1999
17. S. M. Aharoni, J. Appl. phys., v. 43, n. 5, p2463, 1972
18. G. R. Russchau & R. E. Newnham, Journal of composite materals, v. 26, i. 18, p2727, 1992
19. A. Malliaris & D. T. Turner, J. Appl. phys., 42, 2, p614, 1971
20. K. Yamada, M. Murase & O. Takagi, U. S. Patent No.4933109
21. G. Pearson, U.S. Patent No.2,258,958(issued 14 October 1941)
22. E. Frydman, U.K. Patent Specification No.604,695(issued 8 July 1984)
23. Bolger and S.L. Moraro, Adhesives Age, vol.27, No.7, P17,1984
24. 林伯在,碩士論文,國立清華大學,2001
25. S. R. Broadbent & J. M. Hammersley,Proc. Camb. Philos. Soc..53, p629,1957
26. B. Derrida, G. J. Zabolitzky, J. Vannimenus & D. Stauffer, Stat. Phys., 36, p31,1984
27. D. B. Gingold & C. J. Lobb, Phys. Rev. B, 42, p8220, 1990
28. D. Stauffer, “Introduction to percolation Theory”, Taylor & Francis, London. U.K., 1985
29. D. S. Mclachlan, M. Blaszkiewicz & R. E. Newnham, J. Am. Cream. Soc., 73, 8, p2187, 1990
30. B. Jouhier, C. Allain, B. Gauther-Manuel & E. Guyon, “The Sol-Gel Transi- tion”; p167-86 in Annals of the Israel Physical Society, Percolation Pro- cesses and Structures, Vol 5. Edited by G. Deutscher, R. Zallen, and J. Adler. Isral Physical Society, Jerusalem, Iseral, 1983
31. J. Gurland, “An Esitmate of Contact and Continuity of Dispersions in Opaque Samples.”, Trans. Metall. Soc. AIME, 236, p642, 1966
32. B. J. Last & D. J. Thouless, Phys. Rev. Lett., 27, p1719, 1971
33. H. E. Atanley, J. Phys. A, 10, L211, 1977
34. S. Kirkpatrick, Rev. Mod. Phys., 45, p574, 1973
35. A. B. Harris, Phys. Rev. B, 28, p2614, 1983
36. T. Katsura, M. R. Kamal & L. A. Utracki, Adv. Polym. Technol., 5, p193, 1985
37. G. Deutscher & M. L. Rappaport, J. Phys. Lett., 40, L-219, 1979
38. F. Carmona, P. Delhaes, F. Barreau, D. Ordiera, R. Canet & L. Lafeychine., Rev. Chim. Miner., 18, p498, 1981
39. I. Balberg & S. Bozowski, Solid State Commun., 44, p551, 1982
40. W. Y. Hou, W. G. Holtje & J. R. Barkley, J. Mater. Sci. Lett., 7, p459, 1988
41. K. V. Paulose, M. K. Jayaraj, Koshy & A. D. Damodaran, Suppercond. Sci. Technol., 6, p257, 1993
42. J.-S Sun, H. S. Gokturk & D. M. Kalyon, J. Mater. Sci., 28, p60, 1993
43. J. K. Thomas, J. Koshy, J. Kurian. Y. P. Yadava & A. D. Damodaran, J. Appl. Phys., 76, p2376, 1994
44. M. Weber & M. R. Kamal, Polymer Composites, 18, 6 ,p711, 1997
45. Y. Zweifel, C. J. G. Plummer, & H.-H. Kausch, J. Mater. Sci., 33, p1715, 1998
46. A. Mikrajuddin, F. G. Shi & K. Okuyama, 1999 Internatiooonalll Symposium on Advanced Packaging Materials, p282, 1999
47. R. Holm, Electric Contacts, Springer, Berlin, 1967
G. R. Ruschau, S. Yoshikawa & R. E. Newnham, J. Appl. Phys., 72, 3, p953, 1992
48. R. D. Sherman, L. M. Middleman & S. M. Jacobs, Polym. Eng. & Sci., 23, 1, p36, 1983
49. I. Dietrich, Z. Phys., 132, p231, 1952
50. J. Simmons, J. Appl. Phys., 34, p1793, 1963
51. E. Sancaktaar & Y. Wei, J. Adhesion Sci. Technol., 10, p1221, 1996
52. D. M. Wood, Phys. Rev. Lett., 46, p479, 1981
53. P. W. Haayman, R. W. Dam & H. A. Klasens, German Patent, June, 1955, No. 929350
54. E. Andrich, Electr.Appl., v. 26, i. 3, p123, 1965
55. G. Pearson, U. S. Patent, Oct., 1941, No.2258958;U. K. Patenet , Specification, Nov., 1941, No.541222
56. Frydman, U. K. Patent, Spec. No.604695
57. Fred Kohler, U. S. Patent, Mar. 1966, No.3243753
58. F. Bueche, J. Appl. Phys., 44, 1, p532, 1973;F. Bueche, J. Polym. Sci., 11, p1319, 1973
59. L. Nicodemo, L. Nicolais, G. Romeo & E. Scafora, Polym. Eng. Sci., 18,4, p293, 1978
60. Ralf Strumpler, J. Appl. Phys., 80, 11, p6091, 1996
61. S. Hirano & A. Kishimoto, Appl. Phys. Lett., 73, p3742, 1998
62. Shijian Luo & C. P. Wong, 1999 International Symposium on Advanced Packagiing Materials, p311, 1999;Shijian Luo & C. P. Wong, 2000 International Symposium on Advanced Packagiing Materials, p343, 2000 ;Shijian Luo & C. P. Wong, IEEE Transactions on Commponents and Packaging Technologies, 23, 1, p151, 2000
63. 金進興,“聚亞醯胺與電子構裝”,工業材料107 期,p 128,民國84 年11 月
64. Michel-Joachim Brekner, Claudius Feger, J.Polym.Sci., vol.25,
p2479, 1987
65. M.I.Bessonov, M.M.Koton, V.V.Kudryavtsev, L.A.Laius,
“Polyimides :thermally stabla polymers”, 1987.
66. G.M.Bower,L.W.Frost,J.Polym.Sci..A-1,p 3135,1963
67. M.M.Koton,V.V.Kudryavtsev,V.P.Sklizkova,P.P.Nefedov,M.A.Lazareva,B.G.Belenkii,I.A.Orlova,Z.G.Oprits,Vysokomol.Soedin.,B22,No.4,p273,1980
68. 王淑慧,“LiMn2O4/聚亞醯胺混成膜之製備及其特性研究”,國立交通大學碩士論文,民國90 年6 月
69. M.K.Ghosh,K.L.Mittal,“Polyimide : Fundamentals and
Applications”,1996
70. W.Volksen,Advances in Polymer Science,vol.117,p 112,1993
71. James E.McGrath, DebraL.Dunson, Sue J.Mecham, James L.Hedrick, “Synthesis and Characterization of Segmented Polyimide-
Polyorganosiloxane Copolymer”, Advances in polymer science,1999.
72. M.E.Rogers, T.E.Glass, S.J.Mecham, D.Rodrigues, G.L.Wilkes, J.Polym.Sci., p 2663,1994
73. Y.J.Kim, T.E.Glass, G.D.Lyle, J.E.McGrath, Macromolecules, vol.26(6,p 1344, 1993)
74. Xiaowen Jiang, Yuezhen Bin, Masaru Matsuo. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 46 (2005) 7418–7424
75. M Hasegawa, N Sebsui, Y Shindo, R Yokota. Macromolecules 1999;32:387
76. Zhu, Bao-Ku Xie, Shu-Hui Xu, Zhi-Kang Xu, You-Yi. Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Composites Science & Technology 66 (2006) 548-554
77. BJ Ash, RW Siegel, LS Schadler. Mechanical behavior of alumina/poly(methyl methacrylate) nanocomposites.
Macromolecules 2004;37:1358–69