研究生: |
許信泰 Hsu, Hsin Tai |
---|---|
論文名稱: |
二硒化鎢場效電晶體之金屬接觸分析 Analysis of Metal Contact on WSe2-Based Field- Effect Transistors |
指導教授: |
邱博文
Chiu, Po Wen |
口試委員: |
簡纹濱
張茂男 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 過渡金屬二硫族化物 、二硒化鎢 、金屬接觸 、傳輸線模型 、接觸區域圖紋化 |
外文關鍵詞: | TMDCs, WSe2, Metal contact, TLM, Contact area patterning |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過渡金屬二硫族化物 (Transition-metal Dichalcogenides, TMDCs) 多為層狀材料,由於可以單層狀態穩定存在於環境,並且具有多樣的導電特性,如絕緣體、半導體甚至是超導等。其中最引人注目的半導體性 TMDCs,如 P 型 WSe2 與 N 型 MoS2,天生自帶的摻雜特性與僅 0.7 nm 的厚度,非常有潛力成為下個世代的通道材料。其他塊材材料如矽與三五族半導體在材料厚度降至個位數奈米時,都面臨極為嚴重的特性衰退,而本身可以單層存在的 TMDCs 可以對抗因厚度降低造成的衰退問題。
本論文以化學氣相沉積的 WSe2 作為研究題材,並採用傳輸線模型與四點探針法來分析 WSe2 品質與金屬接觸特性。並依據文獻模擬的接觸金屬特性來設計實驗,並搭配金屬接觸下 WSe2 圖紋化,再依不同圖紋化及不同接觸金屬搭配組合來分析帶來的改變。並證實以 Schottky Mott Rule 推估的蕭特基能障不再適用,以及金屬與 WSe2
接觸後可能帶來的影響。以點狀邊界圖紋化搭配鉻金接觸的 WSe2 電晶體可以得到最大電流約 1.1 µA/µm 與載子遷移率 µ = 3.4 cm2/V· s;與未作圖紋化的鉻金接觸 WSe2 電晶體相比電流提升 120 倍與最佳載子遷移率上升 10 倍。
Transition-metal Dichalcogenides (TMDCs) is a category of layered material whose monolayer is stable in ambient and with diverse conducting properties from insulator to
superconductor. Among the TMDCs, semiconducting ones are the most intriguing, such as P-type WSe2 and N-type MoS2. The inherent doping and the thickness of monolayer could down to 0.7 nm which is promising to be the channel candidate of next node.
We focused on CVD WSe2 and adopted Transmission Line Model (TLM) and 4 port measurement to analysis WSe2 thin film quality and its metal contact properties. Utilizing
simulation results and data from aforementioned TLM to set up our experiment. We composed contact area pattering and different contact metal to confirm our predictions. The intuitively predicted Schottky barrier height by Schottky Mott Rule is no more held.
We obtained remarkable enhancement in the case of dot patterned WSe2 along with Cr/Au contact. Maximum current recorded 1.1 µA/µm and mobility equaled to 3.4 cm2/V· s. The current increased by 120 times and best mobility improved by 10 times both compared to pristine WSe2 with same contact metal.
[1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,”Phys.Rev., vol. 74, no. 2, pp. 230–231, 1948.
[2] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,”Phys. Rev., vol. 71, no. 10, pp. 717–727, 1947.
[3] “The first metal-oxide-semiconductor FET,” http:// www.computerhistory.org/semiconductor/timeline/1960-MOS.html.
[4] “The first computer,” https://en.wikipedia.org/wiki/ENIAC.
[5] “The first bipolar transistor,”http://www.computerhistory.org/revolution/digital-logic/12/273.
[6] “The first IC,” http://socks-studio.com/2011/03/06/evolution-of-the-microchip-1958-1981/.
[7] “Monolithic 3D is now on the roadmap for 2019,” http://electroiq.com/blog/2013/08/monolithic-3d-is-now-on-the-roadmap-for-2019/.
[8] “International technology roadmap for semiconductors (ITRS, 2012),” http://www.itrs.net/.
[9] G. W. Neudeck, The PN Junction Diode, Modular Series on Solid State Devices,Vol. II. Addison-Wesley, 1983.
[10] V. Heine, “Theory of surface states,” Phys. Rev., vol. 138, no. 6A, pp. A1689–A1696, 1965.
[11] J. Tersoff, “Schottky barrier heights and the continuum of gap states,” Phys. Rev. Lett., vol. 52, no. 6, pp. 465–468, 1984.
[12] H. Hasegawa and T. Sawada, “On the electrical properties of compound semiconductor interfaces in metal/insulator/semiconductor structures and the possible
origin of interface states,” Thin Solid Films, vol. 103, no. 1, pp. 119–140, 1983.
[13] D. Connelly, C. Faulkner, D. Grupp, and J. Harris, “A new route to zero-barrier metal source/drain MOSFETs,” IEEE Trans. Nanotechnol., vol. 3, no. 1, pp. 98–104, 2004.
[14] A. Agrawal, J. Lin, M. Barth, R. White, B. Zheng, S. Chopra, S. Gupta, K. Wang, J. Gelatos, S. E. Mohney, and S. Datta, “Fermi level depinning and contact resistivity
reduction using a reduced titania interlayer in n-silicon metal-insulatorsemiconductor ohmic contacts,” Appl. Phys. Lett., vol. 104, no. 11, pp. 1121011–1121014, 2014.
[15] A. HADDAD, “SB-IGFET: An insulated-gate field-effect transistor using Schot-tky barrier contacts for source and drain,” Proc. IEE., vol. 56, pp. 1400–1402,1968.
[16] J. M. Larson and J. P. Snyder, “Overview and status of metal S/D Schottky-barrier MOSFET technology,” IEEE Trans. Electron Dev., vol. 53, no. 5, pp. 1048–1058, 2006.
[17] A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E. Evangelou, “Fermi-level pinning and charge neutrality level in germanium,” Appl. Phys. Lett., vol. 89, no. 25, pp. 252110–252110, 2006.
[18] J. Tersoff, “Theory of semiconductor heterojunctions: The role of quantum dipoles,” Phys. Rev. B, vol. 30, no. 8, pp. 4874–4877, 1984.
[19] R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, “Ohmic contact formation on n-type Ge,” Appl. Phys. Lett., vol. 92, no. 2, pp. 21061–21063, 2008.
[20] D. Han, Y. Wang, D. Tian, W. Wang, X. Liu, J. Kang, and R. Han, “Studies of Ti-and Ni-germanide Schottky contacts on n-Ge (100) substrates,” Microelectron. Eng., vol. 82, no. 2, pp. 93–98, 2005.
[21] K. Ikeda, Y. Yamashita, N. Sugiyama, N. Taoka, and S.-i. Takagi, “Modulation of NiGe/Ge Schottky barrier height by sulfur segregation during Ni germanidation,”Appl. Phys. Lett., vol. 88, no. 15, pp. 21151–21153, 2006.
[22] N. Braslau, “Contact and metallization problems in GaAs integrated circuits,”JVSTA, vol. 4, no. 6, pp. 3085–3090, 1986.
[23] N. Newman, M. Van Schilfgaarde, T. Kendelwicz, M. Williams, and W. Spicer,“Electrical study of Schottky barriers on atomically clean GaAs (110) surfaces,”Phys. Rev. B, vol. 33, no. 2, pp. 1146–1159, 1986.
[24] T. Okumura and K. Tu, “Electrical characterization of Schottky contacts of Au, Al, Gd, and Pt on n-type and p-type GaAs,” J. Appl. Phys., vol. 61, no. 8, pp. 2955–2961, 1987.
[25] T. Kuan, P. Batson, T. Jackson, H. Rupprecht, and E. Wilkie, “Electron microscope studies of an alloyed Au/Ni/Au-Ge ohmic contact to GaAs,” J. Appl. Phys., vol. 54, no. 12, pp. 6952–6957, 1983.
[26] A. Baca, F. Ren, J. Zolper, R. Briggs, and S. Pearton, “A survey of ohmic contacts to III-V compound semiconductors,” Thin Solid Films, vol. 308, pp. 599–606, 1997.
[27] H.-J. Kim, M. Murakami, W. Price, and M. Norcott, “Thermally stable ohmic contacts to n-type GaAs. VI. InW contact metal,” J. Appl. Phys., vol. 67, no. 9,pp. 4183–4189, 1990.
[28] J. Dow and R. Allen, “Surface defects and Fermi-level pinning in InP,” JVST,vol. 20, no. 3, pp. 659–661, 1982.
[29] H. Temkin, R. McCoy, V. Keramidas, and W. Bonner, “Ohmic contacts to p-type InP using Be-Au metallization,” Appl. Phys. Lett., vol. 36, no. 6, pp. 444–446, 1980.
[30] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov, “Electric field effect in atomically thin carbon films,”Science, vol. 306, no. 5696, pp. 666–669, 2004.
[31] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State
Commun., vol. 146, no. 9, pp. 351–355, 2008.
[32] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang,“Black phosphorus field-effect transistors,” Nat. Nanotech., vol. 9, no. 5, pp. 372–
377, 2014.
[33] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande, “Silicene field-effect transistors operating at room temperature,” Nat. Nanotech., vol. 10, no. 3, pp. 227–231, 2015.
[34] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 18, no. 73, pp. 193–335, 1969.
[35] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotech., vol. 6, no. 3, pp. 147–150, 2011.
[36] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,”Nat. Nanotech., vol. 7, no. 11, pp. 699–712, 2012.
[37] E. Mooser, Physics and chemistry of materials with layered structures. Springer,1979.
[38] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, “Photoluminescence from chemically exfoliated MoS2,” Nano Lett., vol. 11, no. 12, pp. 5111–5116, 2011.
[39] H. Yuan, H. Wang, and Y. Cui, “Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling,”Acc. Chem. Res., vol. 48, no. 1, pp. 81–90, 2015.
[40] M. Naito and S. Tanaka, “Electrical transport properties in 2H-NbS2,-NbSe2,-TaS2 and-TaSe2,” J. Phys. Soc. Jpn., vol. 51, no. 1, pp. 219–227, 1982.
[41] C. Fang, G. Wiegers, C. Haas, and R. De Groot, “Electronic structures of, and in the real and the hypothetical undistorted structures,” J. Phys. Condens. Matter.,vol. 9, no. 21, pp. 4411–4424, 1997.
[42] A. H. Reshak and S. Auluck, “Ab initio calculations of the electronic and optical properties of 1T-HfX2 compounds,” Physica B, vol. 363, no. 1, pp. 25–31, 2005.
[43] Y. Wang, L. Li, W. Yao, S. Song, J. Sun, J. Pan, X. Ren, C. Li, E. Okunishi, Y.-Q. Wang, E. Wang, Y. Shao, Y. Zhang, H.-t. Yang, E. F. Schwier, H. Iwasawa,K. Shimada, M. Taniguchi, Z. Cheng, S. Zhou, S. Du, S. J. Pennycook, S. T. Pan-telides, and G. Hong-Jun, “Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt,” Nano Lett., vol. 15, no. 6, pp. 4013–4018, 2015.
[44] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B, vol. 83, no. 24, pp. 2452131–2452134, 2011.
[45] T. Finteis, M. Hengsberger, T. Straub, K. Fauth, R. Claessen, P. Auer, P. Steiner,S. Hüfner, P. Blaha, M. Vögt, L.-S. M, and E. Bucher, “Occupied and unoccupied electronic band structure of WSe2,” Phys. Rev. B, vol. 55, no. 16, pp. 10400–10411, 1997.
[46] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang,“Emerging photoluminescence in monolayer MoS2,” Nano Lett., vol. 10, no. 4,pp. 1271–1275, 2010.
[47] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, “Evolution of electronic structure in atomically thin sheets of WS2 and WSe2,” ACS Nano, vol. 7, no. 1, pp. 791–797, 2012.
[48] S. Das, W. Zhang, M. Demarteau, A. Hoffmann, M. Dubey, and A. Roelofs, “Tunable transport gap in phosphorene,” Nano Lett., vol. 14, no. 10, pp. 5733–5739, 2014.
[49] A. Kumar and P. Ahluwalia, “Electronic structure of transition metal dichalco-genides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory:new direct band gap semiconductors,” Eur. Phys. J. B., vol. 85, no. 6, pp. 1–7,
2012.
[50] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2,” Nanoscale, vol. 5, no. 20, pp. 9677–9683, 2013.
[51] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, “Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional
WSe2,” Phys. Rev. B, vol. 88, no. 19, pp. 1953131–1953137, 2013.
[52] Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, M. S. Dresselhaus, and Q. Xiong, “Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2,” Nano Lett., vol. 13, no. 3, pp. 1007–1015, 2013.
[53] H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Prad-han, Z. Lin, M. Nguyen, A. Elias, T. Mallouk, L. Balicas, M. Pimenta, and M. Terrones, “New first order Raman-active modes in few layered transition metal dichalcogenides,” Sci Rep., vol. 4, pp. 1–9, 2014.
[54] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, “Large-area synthesis of highlycrystalline WSe2 monolayers and device applications,” ACS Nano, vol. 8, no. 1, pp. 923–930, 2013.
[55] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, S. M. d. Vasconcellos, and R. Bratschitsch, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908–4916, 2013.
[56] J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang, “Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications,” Nanoscale, vol. 7, no. 9, pp. 4193–4198, 2015.
[57] M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, C. Jin, S. H. Chaki, Y.-S. Huang, J. Zhang, and L. Xie, “Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport,” ACS Nano, vol. 8, no. 7, pp. 7130–7137, 2014.
[58] H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Marting, A. M. Minore, F. C. S, E. Yablonovitch, R. Maboudianc, and A. Javey,“Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides,” Proc. Natl. Acad. Sci. USA., vol. 111, no. 17, pp. 6198–
6202, 2014.
[59] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. Mandrus, W. Yao, and X. Xu,“Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 het-erostructures,” Nat. Commun., vol. 6, pp. 1–6, 2015.
[60] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, “Optical generation of excitonic valley coherence in monolayer WSe2,” Nat. Nanotech., vol. 8, no. 9, pp. 634–638, 2013.
[61] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters,“Anomalous Raman spectra and thickness-dependent electronic properties of WSe2,” Phys. Rev. B, vol. 87, no. 16, pp. 1654091–1654096, 2013.
[62] W. Walukiewicz, “Intrinsic limitations to the doping of wide-gap semiconductors,” Physica B, vol. 302, pp. 123–134, 2001.
[63] J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, and J. Wu, “Doping against the native
propensity of MoS2: Degenerate hole doping by cation substitution,” Nano Lett., vol. 14, no. 12, pp. 6976–6982, 2014.
[64] J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, “Band offsets and heterostructures of two-dimensional semiconductors,” Appl. Phys. Lett., vol. 102, no. 1, pp. 0121111–0121114, 2013.
[65] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu,“Electrically tunable excitonic light-emitting diodes based on monolayer WSe2
pn junctions,” Nat. Nanotech., vol. 9, no. 4, pp. 268–272, 2014.
[66] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, “MoS2 p-type transistors and diodes enabled by high work function MoOx contacts,” Nano Lett., vol. 14, no. 3, pp. 1337–1342, 2014.
[67] P. Zhao, D. Kiriya, A. Azcatl, C. Zhang, M. Tosun, Y.-S. Liu, M. Hettick, J. S.Kang, S. McDonnell, S. KC, J. Guo, K. Cho, R. M. Wallace, and A. Javey, “Air stable p-doping of WSe2 by covalent functionalization,” ACS Nano, vol. 8, no. 10, pp. 10808–10814, 2014.
[68] S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman, and J. Wu, “Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,” Nano Lett.,vol. 13, no. 6, pp. 2831–2836, 2013.
[69] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghu-nathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, “Defects acti-
vated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons,” Sci Rep., vol. 3, pp. 1–5, 2013.
[70] W. Jaegermann, C. Pettenkofer, and B. Parkinson, “Cu and Ag deposition on layered p-type WSe2: Approaching the Schottky limit,” Phys. Rev. B, vol. 42, no. 12, pp. 7487–7496, 1990.
[71] V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett., vol. 84, no. 17, pp. 3301–3303, 2004.
[72] A. Klein, Y. Tomm, R. Schlaf, C. Pettenkofer, W. Jaegermann, M. Lux-Steiner, and E. Bucher, “Photovoltaic properties of WSe2 single-crystals studied by photoelectron spectroscopy,” Sol. Energy Mater., vol. 51, no. 2, pp. 181–191, 1998.
[73] R. Späh, U. Elrod, M. Lux-Steiner, E. Bucher, and S. Wagner, “PN junctions in tungsten diselenide,” Appl. Phys. Lett., vol. 43, no. 1, pp. 79–81, 1983.
[74] H.-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, “Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping,” Phys. Rev. Lett., vol. 109, no. 3, pp. 0355031–0355035, 2012.
[75] S. McDonnell, R. Addou, C. Buie, R. M. Wallace, and C. L. Hinkle, “Defect-dominated doping and contact resistance in MoS2,” ACS Nano, vol. 8, no. 3, pp. 2880–2888, 2014.
[76] D. Liu, Y. Guo, L. Fang, and J. Robertson, “Sulfur vacancies in monolayer MoS2 and its electrical contacts,” Appl. Phys. Lett., vol. 103, no. 18, pp. 1831131–1831134, 2013.
[77] H. Liu, N. Han, and J. Zhao, “Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties,” RSC Adv., vol. 5, no. 23, pp. 17572–17581, 2015.
[78] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I.Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Lett., vol. 13, no. 6, pp. 2615–2622, 2013.
[79] C. Huang, S. Wu, A. M. Sanchez, J. J. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, “Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors,” Nat. Mater., vol. 13, no. 12, pp. 1096–1101, 2014.
[80] Y.-C. Lin, T. Björkman, H.-P. Komsa, P.-Y. Teng, C.-H. Yeh, F.-S. Huang, K.-H. Lin, J. Jadczak, Y.-S. Huang, P.-W. Chiu, A. V. Krasheninnikov, and K. Suenaga, “Three-fold rotational defects in two-dimensional transition metal dichalcogenides,” Nat. Commun., vol. 6, pp. 1–6, 2015.
[81] J. A. Robinson, S. Eichfeld, Y.-C. Lin, N. Lu, and M. Kim, “Growth morphology and defects in 2D heterostructures and interfaces,” Microsc. Microanal., vol. 21, no. S3, pp. 101–102, 2015.
[82] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene ransistors,” ACS Nano, vol. 4, no. 12, pp. 7221–7228, 2010.
[83] D. J. Late, B. Liu, H. R. Matte, V. P. Dravid, and C. Rao, “Hysteresis in single-layer MoS2 field effect transistors,” ACS Nano, vol. 6, no. 6, pp. 5635–5641, 2012.
[84] H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe2 p-FETs with chemically doped contacts,” Nano Lett., vol. 12, no. 7, pp. 3788–3792, 2012.
[85] H. Fang, M. Tosun, G. Seol, T. C. Chang, K. Takei, J. Guo, and A. Javey, “Degenerate n-doping of few-layer transition metal dichalcogenides by potassium,”Nano Lett., vol. 13, no. 5, pp. 1991–1995, 2013.
[86] B. Liu, M. Fathi, L. Chen, A. Abbas, Y. Ma, and C. Zhou, “Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study,” ACS Nano, vol. 9, no. 6, pp. 6119–6127, 2015.
[87] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C. Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility WSe2 p-and n-type field-effect transistors contacted by highly doped graphene for lowresistance contacts,” Nano Lett., vol. 14, no. 6, pp. 3594–3601, 2014.
[88] J. Wang, D. Rhodes, S. Feng, M. A. T. Nguyen, K. Watanabe, T. Taniguchi, T. E. Mallouk, M. Terrones, L. Balicas, and J. Zhu, “Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states,” Appl. Phys. Lett., vol. 106, no. 15,pp. 1521041–1521045, 2015.
[89] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, “High performance multilayer MoS2 transistors with scandium contacts,” Nano Lett., vol. 13, no. 1, pp. 100–105, 2012.
[90] C. Gong, L. Colombo, R. M. Wallace, and K. Cho, “The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces,” Nano Lett., vol. 14, no. 4, pp. 1714–1720, 2014.
[91] B. Hammer and J. K. Nørskov, Theoretical surface science and catalysis—calculations and concepts, vol. 45. Elsevier, 2000.
[92] J. Zheng, Y. Wang, L. Wang, R. Quhe, Z. Ni, W.-N. Mei, Z. Gao, D. Yu, J. Shi, and J. Lu, “Interfacial properties of bilayer and trilayer graphene on metal substrates,”Sci Rep., vol. 3, pp. 1–11, 2013.
[93] Y. Wang, R. X. Yang, R. Quhe, H. Zhong, L. Cong, M. Ye, Z. Ni, Z. Song, J. Yang, J. Shi, J. Li, and J. Lu, “Does p-type ohmic contact exist in WSe2-metal interfaces?,” Nanoscale, vol. 8, pp. 1179–1191, 2016.
[94] R. T. Tung, “Formation of an electric dipole at metal-semiconductor interfaces,”Phys. Rev. B, vol. 64, no. 20, pp. 2053101–20531015, 2001.
[95] Y. Liu, H. Wu, H. C. Cheng, S. Yang, E. Zhu, Q. He, M. Ding, D. Li, J. Guo, N. Weiss, Y. Huang, and X. Duan, “Towards barrier free contact to molybdenum disulfide using graphene electrodes,” Nano Lett., vol. 15, no. 5, pp. 3030–3034, 2015.
[96] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. Thong, “Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes,” ACS Nano, vol. 9, no. 1, pp. 869–877, 2014.
[97] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,”
Phys. Rev. X, vol. 4, no. 3, pp. 0310051–03100514, 2014.
[98] S. McDonnell, A. Azcatl, R. Addou, C. Gong, C. Battaglia, S. Chuang, K. Cho, A. Javey, and R. M. Wallace, “Hole contacts on transition metal dichalcogenides:Interface chemistry and band alignments,” ACS Nano, vol. 8, no. 6, pp. 6265–6272, 2014.
[99] J. Kang, W. Liu, and K. Banerjee, “High-performance MoS2 transistors with low-resistance molybdenum contacts,” Appl. Phys. Lett., vol. 104, no. 9, pp. 0931061–0931065, 2014.
[100] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals,”Nat. Commun., vol. 3, pp. 10111–10117, 2012.
[101] Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer, Y. Hu, M. Ruan,J. Hankinson, J. Kunc, J. D. Cressler, C. Berger, and W. A. d. Heer, “Record maximum oscillation frequency in C-face epitaxial graphene transistors,” Nano Lett., vol. 13, no. 3, pp. 942–947, 2013.
[102] S. Ng, Z. Hassan, and H. Abu Hassan, “Experimental and theoretical studies of surface phonon polariton of AlN thin film,” Appl. Phys. Lett., vol. 90, no. 8, pp. 19021–19023, 2007.
[103] B. Chamlagain, Q. Li, N. J. Ghimire, H.-J. Chuang, M. M. Perera, H. Tu, Y. Xu, M. Pan, D. Xaio, J. Yan, D. Mandrus, and Z. Zhou, “Mobility improvement and temperature dependence in MoSe2 field-effect transistors on Parylene-C substrate,” ACS Nano, vol. 8, no. 5, pp. 5079–5088, 2014.
[104] W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, “Silicon nitride gate dielectrics and band gap engineering in graphene layers,” Nano Lett., vol. 10, no. 9, pp. 3572–3576, 2010.
[105] S. Ghatak, A. N. Pal, and A. Ghosh, “Nature of electronic states in atomically thin MoS2 field-effect transistors,” ACS Nano, vol. 5, no. 10, pp. 7707–7712, 2011.
[106] G. He, K. Ghosh, U. Singisetti, H. Ramamoorthy, R. Somphonsane, G. Bohra, M. Matsunaga, A. Higuchi, N. Aoki, S. Najmaei, Y. Gong, X. Zhang, R. Vajtai, A. PM, and J. Bird, “Conduction mechanisms in CVD-grown monolayer MoS2 transistors: From variable-range hopping to velocity saturation,” Nano Lett., vol. 15, no. 8, pp. 5052–5058, 2015.
[107] M. Y. Chan, K. Komatsu, S.-L. Li, Y. Xu, P. Darmawan, H. Kuramochi, S. Nakaharai, A. Aparecido-Ferreira, K. Watanabe, T. Taniguchi, and K. Tsukagoshi,“Suppression of thermally activated carrier transport in atomically thin MoS2
on crystalline hexagonal boron nitride substrates,” Nanoscale, vol. 5, no. 20, pp. 9572–9576, 2013.
[108] D. Jena and A. Konar, “Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering,” Phys. Rev. Lett., vol. 98, no. 13, pp. 1368051–1368054, 2007.
[109] F. Chen, J. Xia, D. K. Ferry, and N. Tao, “Dielectric screening enhanced performance in graphene FET,” Nano Lett., vol. 9, no. 7, pp. 2571–2574, 2009.
[110] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett., vol. 13, no. 5, pp. 1983–1990, 2013.
[111] J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto, and C. H. Sow, “Atomic healing of defects in transition metal dichalcogenides,” Nano Lett., vol. 15, no. 5, pp. 3524–3532, 2015.
[112] Y. Guo, D. Liu, and J. Robertson, “Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts,” Appl. Phys. Lett., vol. 106, no. 17, pp. 1731061–1731065, 2015.
[113] H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, “Hopping transport through defect-induced localized states in molybdenum disulphide,” Nat. Commun., vol. 4, pp. 1–6, 2013.
[114] J. Brivio, D. T. Alexander, and A. Kis, “Ripples and layers in ultrathin MoS2 membranes,” Nano Lett., vol. 11, no. 12, pp. 5148–5153, 2011.
[115] M. Tosun, S. Chuang, H. Fang, A. B. Sachid, M. Hettick, Y. Lin, Y. Zeng, and A. Javey, “High-gain inverters based on WSe2 complementary field-effect tran-
sistors,” ACS Nano, vol. 8, no. 5, pp. 4948–4953, 2014.
[116] D.-H. Kang, J. Shim, S. K. Jang, J. Jeon, M. H. Jeon, G. Y. Yeom, W.-S. Jung, Y. H. Jang, S. Lee, and J.-H. Park, “Controllable nondegenerate p-type doping of tungsten diselenide by Octadecyltrichlorosilane,” ACS Nano, vol. 9, no. 2, pp. 1099–1107, 2015.
[117] N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, and T. Yu, “Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2,” ACS Nano, vol. 8, no. 11, pp. 11320–11329, 2014.
[118] L. Yu, A. Zubair, E. J. Santos, X. Zhang, Y. Lin, Y. Zhang, and T. Palacios,“High-performance wse2 complementary metal oxide semiconductor technology and integrated circuits,” Nano Lett., vol. 15, no. 8, pp. 4928–4934, 2015.
[119] H.-Y. Park, M.-H. Lim, J. Jeon, G. Yoo, D.-H. Kang, S. K. Jang, M. H. Jeon, Y. Lee, J. H. Cho, G. Y. Yeom, W.-S. Jung, J. Lee, S. Park, S. Lee, and J. H. Park, “Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation,” ACS Nano, vol. 9, no. 3, pp. 2368–2376, 2015.
[120] L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, “Chloride molecular doping technique on 2D materials: WS2 and MoS2,” Nano Lett., vol. 14, no. 11, pp. 6275–6280, 2014.
[121] H. M. Khalil, M. F. Khan, J. Eom, and H. Noh, “Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance,” ACS Appl Mater Interfaces, vol. 7, no. 42, pp. 23589–23596, 2015.
[122] D. M. Sim, M. Kim, S. Yim, M. J. Choi, J. Choi, S. Yoo, and Y. S. Jung, “Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption,” ACS Nano, vol. 9, no. 12, pp. 12115–12123, 2015.
[123] K. Dolui, I. Rungger, C. D. Pemmaraju, and S. Sanvito, “Possible doping strategies for MoS2 monolayers: An ab initio study,” Phys. Rev. B, vol. 88, no. 7, pp.
0754201–0754209, 2013.
[124] A. Sanne, R. Ghosh, A. Rai, M. N. Yogeesh, S. H. Shin, A. Sharma, K. Jarvis, L. Mathew, R. Rao, D. Akinwande, and S. Banerjee, “Radio frequency transistors and circuits based on CVD MoS2,” Nano Lett., vol. 15, no. 8, pp. 5039–5045, 2015.
[125] A. Rai, A. Valsaraj, H. C. Movva, A. Roy, R. Ghosh, S. Sonde, S. Kang, J. Chang, T. Trivedi, R. Dey, S. Guchhait, S. Larentis, R. L. F, E. Tutuc, and S. K. Banerjee,“Air stable doping and intrinsic mobility enhancement in monolayer molybdenum disulfide by amorphous titanium suboxide encapsulation,” Nano Lett., vol. 15, no. 7, pp. 4329–4336, 2015.
[126] R. Bissessur, M. G. Kanatzidis, J. Schindler, and C. Kannewurf, “Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2,” J. Chem. Soc., Chem. Commun., no. 20, pp. 1582–1585, 1993.
[127] D. Voiry, A. Goswami, R. Kappera, C. d. C. C. e Silva, D. Kaplan, T. Fujita, M. Chen, T. Asefa, and M. Chhowalla, “Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering,” Nat. Chem., vol. 7, no. 1, pp. 45–49, 2015.
[128] R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, and M. Chhowalla, “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater., vol. 13, no. 12, pp. 1128–1134, 2014.
[129] Y. Ma, B. Liu, A. Zhang, L. Chen, M. Fathi, C. Shen, A. N. Abbas, M. Ge, M. Mecklenburg, and C. Zhou, “Reversible semiconducting-to-metallic phase transition in chemical vapor deposition grown monolayer WSe2 and applications for devices,” ACS Nano, vol. 9, no. 7, pp. 7383–7391, 2015.
[130] T. Chu and Z. Chen, “Understanding the electrical impact of edge contacts in few-layer graphene,” ACS Nano, vol. 8, no. 4, pp. 3584–3589, 2014.
[131] R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K. Chan, J. Tersoff, and P. Avouris, “Ambipolar electrical transport in semiconducting single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 87, no. 25, pp. 2568051–2568054, 2001.
[132] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, vol. 424, no. 6949, pp. 654–657, 2003.
[133] C. Gong, S. McDonnell, X. Qin, A. Azcatl, H. Dong, Y. J. Chabal, K. Cho, and R. M. Wallace, “Realistic metal-graphene contact structures,” ACS Nano, vol. 8, no. 1, pp. 642–649, 2013.
[134] J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, “Reducing contact resistance in graphene devices through contact area patterning,” ACS Nano, vol. 7, no. 4, pp. 3661–3667, 2013.
[135] W. S. Leong, H. Gong, and J. T. Thong, “Low-contact-resistance graphene devices with nickel-etched-graphene contacts,” ACS Nano, vol. 8, no. 1, pp. 994–1001,
2013.
[136] H. Berger, “Models for contacts to planar devices,” Sol. St. Elec., vol. 15, no. 2, pp. 145–158, 1972.
[137] F. Xia, V. Perebeinos, Y.-m. Lin, Y. Wu, and P. Avouris, “The origins and limits of metal-graphene junction resistance,” Nat. Nanotech., vol. 6, no. 3, pp. 179–184,
2011.
[138] H. Liu, M. Si, Y. Deng, A. T. Neal, Y. Du, S. Najmaei, P. M. Ajayan, J. Lou, and P. D. Ye, “Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers,” ACS Nano, vol. 8, no. 1, pp. 1031–1038, 2013.
[139] W. Zhang, M.-H. Chiu, C.-H. Chen, W. Chen, L.-J. Li, and A. T. S. Wee, “Role of metal contacts in high-performance phototransistors based on WSe2 monolayers,”
ACS Nano, vol. 8, no. 8, pp. 8653–8661, 2014.
[140] S.-L. Li, K. Komatsu, S. Nakaharai, Y.-F. Lin, M. Yamamoto, X. Duan, and K. Tsukagoshi, “Thickness scaling effect on interfacial barrier and electrical contact to two-dimensional MoS2 layers,” ACS Nano, vol. 8, no. 12, pp. 12836–12842, 2014.
[141] B. Radisavljevic and A. Kis, “Mobility engineering and a metal-insulator transition in monolayer MoS2,” Nat. Mater., vol. 12, no. 9, pp. 815–820, 2013.
[142] S. H. H. Shokouh, P. J. Jeon, A. Pezeshki, K. Choi, H. S. Lee, J. S. Kim, E. Y. Park, and S. Im, “High-performance, air-stable, top-gate, p-channel WSe2 field-effect transistor with fluoropolymer buffer layer,” Adv. Funct. Mater., vol. 25, no. 46, pp. 7208–7214, 2015.
[143] Y.-Z. Chen, H. Medina, T.-Y. Su, J.-G. Li, K.-Y. Cheng, P.-W. Chiu, and Y.-L. Chueh, “Ultrafast and low temperature synthesis of highly crystalline and pat-
ternable few-layers tungsten diselenide by laser irradiation assisted selenization process,” ACS Nano, vol. 9, no. 4, pp. 4346–4353, 2015.
[144] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, 2011.
[145] X. Wang, H. Feng, Y. Wu, and L. Jiao, “Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition,” J. Am. Chem. Soc., vol. 135, no. 14,
pp. 5304–5307, 2013.
[146] X. Lu, M. I. B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S. T. Pantelides, J. Wang, Z. Dong, Z. Liu, W. Zhou, and Q. Xiong, “Large-area synthesis of mono-layer and few-layer MoSe2 films on SiO2 substrates,” Nano Lett., vol. 14, no. 5,pp. 2419–2425, 2014.
[147] X. Zhou, L. Gan, W. Tian, Q. Zhang, S. Jin, H. Li, Y. Bando, D. Golberg, and T. Zhai, “Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors,” Adv. Mater., vol. 27, no. 48, pp. 8035–8041, 2015.
[148] S. Nakaharai, M. Yamamoto, K. Ueno, Y.-F. Lin, S. Li, and K. Tsukagoshi, “Electrostatically reversible polarity of ambipolar α-MoTe2 transistors,” ACS Nano, vol. 9, no. 6, pp. 5976–5983, 2015.
[149] Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, “Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary,” ACS Nano,vol. 7, no. 10, pp. 8963–8971, 2013.
[150] A. Allain, J. Kang, K. Banerjee, and A. Kis, “Electrical contacts to two-dimensional semiconductors,” Nat. Mater., vol. 14, no. 12, pp. 1195–1205, 2015.
[151] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.W. Chu, K.-H. Wei, J.-H. He, W.-H. Chang, K. Suenaga, and L.-J. Li, “Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface,” Science, vol. 349, no. 6247, pp. 524–528, 2015.
[152] K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C.-J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature, vol. 520, no. 7549, pp. 656–660, 2015.
[153] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, and K. Banerjee, “A subthermionic tunnel field-effect transistor with an atomically thin channel,” Nature, vol. 526, no. 7571, pp. 91–95, 2015.