簡易檢索 / 詳目顯示

研究生: 林昂櫻
Lin, Ang-Ying
論文名稱: 受紫外光照射之聚苯乙烯薄膜與雙層膜表面的破裂波紋
Fracture-induced ripple patterns on the surface of UV-irradiated polystyrene thin films and bilayered films
指導教授: 李三保
Lee, Sanboh
口試委員: 李三保
楊聰仁
黃健朝
洪健龍
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 131
中文關鍵詞: 破裂波紋紫外光聚苯乙烯光阻
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 破裂引發微結構的形成方式是藉由分離三明治結構試片的上下基板,使夾層的高分子薄膜破裂成一組互補的非對稱破裂波紋在兩基板表面。
    在實驗(一)中,我們採用拉伸與劈裂的方式在低分子量聚苯乙烯薄膜上引發週期性破裂波紋。接著,我們進一步探討不同紫外光劑量對聚苯乙烯薄膜之破裂波紋的表面形貌的影響。而在實驗(二)中,我們採用高分子量的聚苯乙烯來討論分子量的差異對於劈裂引發之破裂波紋的影響。為了排除高分子量聚苯乙烯中的雜質與添加物,我們以沉澱分級的方式加以純化,並觀察純化前後對破裂引發波紋的影響。最後.在實驗(三)中我們採用低分子量聚苯乙烯與光阻形成雙層膜的三明治試片。以劈裂方式分離試片後,觀察試片表面破裂引發結構在單層膜與雙層膜之情況下的差異。
    由實驗結果可知,破裂波紋的波長與對應的膜厚呈線性關係,且與採用的破裂方式無關。而對於兩種破裂方式來說,波長對膜厚的比率皆隨照射劑量增加而減少。此外,高分子材料的種類與分子量的差異也會對破裂波紋產生影響。


    The fracture-induced structure (FIS) can be formed by separating the sandwich structure specimen. The film was fractured into two complementary set of nonsymmetrical cracked ripples on substrates.
    In experiment I, we used the tension-splitting and peeling–splitting method to induced periodic ripples on low molecular weight polystyrene (PS) films. Then we investigated the effect of UV (ultraviolet) irradiation on the surface modulation of FIS for PS films. Next, we used high molecular weight PS as the material to discuss the effect of the different molecular weight on surface gratings by peeling–splitting method in experiment II. In order to remove impurities and additives from high molecular weight PS pellets, we used fractional precipitation method and observed the difference in FIS without and with fractional precipitation. Finally, we used low molecular weight PS and photoresist to form the bilayered film sandwiched by two silicon substrates in experiment III. After separating by peeling–splitting, we investigated the difference between monolayer and bilayer situation for fracture-induced structure.
    The spatial wavelength of the surface structures is a linear function of the film thickness which is independent of the splitting approaches. For both two splitting processes, the ratio of the spatial wavelength to the film thickness decreased with the increase of irradiation dose. Besides, the different kinds of polymers and molecular weight also have the effect on cracked ripples.

    Acknowledgements I Abstract II 摘要 III Contents IV Figure Captions VI List of Table XV Chapter 1 Introduction 1 1.1 The instability theory and fracture-induced structure 1 1.2 UV induced degradation of polystyrene 7 Chapter 2 Experiment 14 2.1 Experimental procedure 14 2.1.1 Sample preparation 14 2.1.2 Experimental parameters 17 2.2 Experimental Analyses 20 2.2.1 Optical microscope 20 2.2.2 Atomic force microscope (AFM) 20 2.2.3 Alpha-Step Profilometer (α-step) 21 2.2.4 Gel Permeation Chromatography (GPC) 21 2.2.5 Contact angle 22 2.2.6 Differential Scanning Calorimeter (DSC) 22 2.2.7 X-ray photoelectron spectroscopy (XPS) 23 Chapter 3 Results and Discussion 32 3.1 The patterns of the fracture-induced structures 32 3.1.1 Tension-splitting method 32 3.1.2 Peeling-splitting method 33 3.2 The relationship between film thickness and spatial wavelength 35 3.3 The effect of UV irradiation 38 3.3.1 Analysis results 38 3.3.2 The effect of UV irradiation on the spatial wavelength 41 3.4 The apparent surface traction 43 3.4.1 Contact angle results 43 3.4.2 Comparison of the apparent surface traction in two different fracture-induced structures 43 3.4.3 The effect of UV irradiation on the apparent surface traction 45 3.5 The amplitude of the surface patterns 47 3.5.1 The amplitude of two different fracture-induced structures 47 3.5.2 The effect of UV irradiation on the amplitude 48 3.6 The effect of different molecular weights of polystyrene 48 3.7 The effect of bilayer thin film 54 3.7.1 The effect of bilayer thin film on the spatial wavelength 54 3.7.2 The effect of bilayer thin film on the apparent surface traction 56 3.7.3The effect of bilayer thin film on the amplitude 57 Chapter 4 Conclusions 123 Reference 126

    1. C.R. Zamarreño, M. Hernáez, I. Del Villar, I.R. Matías and F.J. Arregui, Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B-Chem., 155(1): 290-297 (2011).
    2. K.E. Paul, W.S. Wong, S.E. Ready and R.A. Street, Additive jet printing of polymer thin-film transistors. Appl. Phys. Lett., 83(10): 2070-2072 (2003).
    3. Y. Yang, J. Ouyang, L. Ma, R.J.H. Tseng and C.W. Chu, Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv. Funct. Mater., 16(8): 1001-1014 (2006).
    4. C.J. Bettinger and Z. Bao, Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater., 22(5): 651-655 (2010).
    5. D.-H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.-C. Hwang, M.R. Zakin, B. Litt, and J.A. Rogers, Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mat., 9(6): 511-517 (2010).
    6. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson and G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature, 393(6681): 146-149 (1998).
    7. W. Mönch and S. Herminghaus, Elastic instability of rubber films between solid bodies. Europhys. Lett., 53(4) (2001).
    8. J. Groenewold, Wrinkling of plates coupled with soft elastic media. Physica A, 298(1–2): 32-45 (2001).
    9. D. Breid and A.J. Crosby, Surface wrinkling behavior of finite circular plates. Soft Matter, 5(2) (2009).
    10. J.Y. Chung, A.J. Nolte and C.M. Stafford, Diffusion-controlled, self-organized growth of symmetric wrinkling patterns. Adv. Mater., 21(13): 1358-1362 (2009).
    11. J.Y. Chung, A.J. Nolte and C.M. Stafford, Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater., 23(3): 349-368 (2011).
    12. D. Breid and A.J. Crosby, Effect of stress state on wrinkle morphology. Soft Matter, 7(9) (2011).
    13. S.P. Lacour, J. Jones, S. Wagner, T. Li and Z. Suo, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE, 93(8): 1459-1467 (2005).
    14. F. Brau, P. Damman, H. Diamant and T.A. Witten, Wrinkle to fold transition: Influence of the substrate response. Soft Matter, 9(34): 8177-8186 (2013).
    15. E. Schäffer, T. Thurn-Albrecht, T.P. Russell and U. Steiner, Electrically induced structure formation and pattern transfer. Nature, 403(6772): 874-877 (2000).
    16. A. Ghatak, M.K. Chaudhury, V. Shenoy and A. Sharma, Meniscus instability in a thin elastic film. Phys. Rev. Lett., 85(20): 4329-4332 (2000).
    17. A. Ghatak and M.K. Chaudhury, Adhesion-induced instability patterns in thin confined elastic film. Langmuir, 19(7): 2621-2631 (2003).
    18. L.F. Pease, P. Deshpande, Y. Wang, W.B. Russel and S.Y. Chou, Self-formation of sub-60-nm half-pitch gratings with large areas through fracturing. Nat. Nano., 2(9): 545-548 (2007).
    19. B. Freund, Nanogratings: Breaking up is a grating experience. Nat. Nano., 2(9): 537-538 (2007).
    20. T.-C. Lin, L.-C. Huang, T.-R. Chou and C.-Y. Chao, Alignment control of liquid crystal molecules using crack induced self-assembled grooves. Soft Matter, 5(19) (2009).
    21. J. Tang, S. Kolliopoulou and D. Tsoukalas, Fabrication of gold nanoparticle lines based on fracture induced patterning. Microelectron. Eng., 86(4–6): 861-864 (2009).
    22. Y. Cai and B.-m.Z. Newby, Fracture-induced formation of parallel silicone strips. J. Mater. Res., 25(05): 803-809 (2010).
    23. C.-C. Lin, F. Yang and S. Lee, Surface wrinkling of an elastic film: Effect of residual surface stress. Langmuir, 24(23): 13627-13631 (2008).
    24. C.C. Lin, The application of micro/nano-structures and materials in nanotechnology, Ph.D. Dissertation, National Tsing Hua University (2010).
    25. Y.-Y. Lee, F. Yang, C.-C. Chen and S. Lee, Process comparison for fracture-induced formation of surface structures on polymer films. Thin Solid Films, 550: 334-339 (2014).
    26. Y.Y. Lee, Different fracture approaches to induce ripple patterns on non-irradiated and irradiated photoresist film, Master's Thesis, National Tsing Hua University (2012).
    27. P.-Y. Liang, F. Yang and S. Lee, Fracture-induced formation of semi-concentric patterns on polymeric films. Mater. Chem. Phys., 135(1): 168-173 (2012).
    28. X. Zhu, K.L. Mills, P.R. Peters, J.H. Bahng, E.H. Liu, J. Shim, K. Naruse, M.E. Csete, M.D. Thouless and S. Takayama, Fabrication of reconfigurable protein matrices by cracking. Nat. Mat., 4(5): 403-406 (2005).
    29. B.C. Kim, C. Moraes, J. Huang, M.D. Thouless and S. Takayama, Fracture-based micro- and nanofabrication for biological applications. Biomat. Sci., 2(3) (2014).
    30. C. Moraes, B.C. Kim, X. Zhu, K.L. Mills, A.R. Dixon, M.D. Thouless and S. Takayama, Defined topologically-complex protein matrices to manipulate cell shape via three-dimensional fiber-like patterns. Lab on a Chip, 14(13) (2014).
    31. B. Ranby and J. Lucki, New aspects of photodegradation and photooxidation of polystyrene. Pure and Applied Chemistry, 52(2): 295-303 (1980).
    32. M.S. Suda Kiatkamjornwong, Saowaluck Wittayapichet, Pattarapan Prasassarakich, Pin-Chawee Vejjanukroh, Degradation of styrene-g-cassava starch filled polystyrene plastics. Polymer Degradation and Stability, 66(3): 323-335 (1999).
    33. M. Palacios, O. García and J. Rodríguez-Hernández, Constructing robust and functional micropatterns on polystyrene surfaces by using deep uv irradiation. Langmuir, 29(8): 2756-2763 (2013).
    34. C. David, D. Baeyens-Volant, G. Delaunois, Q. Lu Vinh, W. Piret and G. Geuskens, Photo-oxidation of polymers—iii: Molecular weight changes in the photolysis and photo-oxidation of polystyrene. European Polymer Journal, 14(7): 501-507 (1978).
    35. A.V. Shyichuk and J.R. White, Analysis of chain-scission and crosslinking rates in the photo-oxidation of polystyrene. J. Appl. Polym. Sci., 77(13): 3015-3023 (2000).
    36. E. Yousif and R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene: Review. Springer Plus, 2(1): 398-429 (2013).
    37. D.K. Owens and R.C. Wendt, Estimation of the surface free energy of polymers. J. Appl. Polym. Sci., 13(8): 1741-1747 (1969).
    38. H. Wang,G. Gu and G. Giu, Evaluation of surface free energy of polymers by contact angle goniometry. J. CENT. SOUTHUNIV. (Science and technology), 37(5): 942-947 (2006).
    39. K. Miyake, N. Satomi and S. Sasaki, Elastic modulus of polystyrene film from near surface to bulk measured by nanoindentation using atomic force microscopy. Appl. Phys. Lett., 89(3): 031925-1 to 031925-3 (2006).
    40. H. Mizumachi, Adhesion science and technology: Proceedings of the international adhesion symposium, japan. Oct. 28, 1997, Amsterdam, Page 719.
    41. W. Pfleging, M. Torge, M. Bruns, V. Trouillet, A. Welle and S. Wilson, Laser- and uv-assisted modification of polystyrene surfaces for control of protein adsorption and cell adhesion. Appl. Surf. Sci., 255(10): 5453-5457 (2009).
    42. J.M. Torres, C.M. Stafford and B.D. Vogt, Impact of molecular mass on the elastic modulus of thin polystyrene films. Polymer, 51(18): 4211-4217 (2010).
    43. V.V. Tsukruk, V.V. Gorbunov, Z. Huang and S.A. Chizhik, Dynamic microprobing of viscoelastic polymer properties. Polym. Int., 49(5): 441-444 (2000).
    44. Y. Li, Y. Yang, F. Yu and L. Dong, Surface and interface morphology of polystyrene/poly(methyl methacrylate) thin-film blends and bilayers. J. Polym. Sci. B Polym. Phys., 44(1): 9-21 (2006).
    45. C.K. Huang, W.M. Lou, C.J. Tsai, T.-C. Wu and H.-Y. Lin, Mechanical properties of polymer thin film measured by the bulge test. Thin Solid Films, 515(18): 7222-7226 (2007).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE