簡易檢索 / 詳目顯示

研究生: 洛 虎
Kardile, Rahul Dadabhau
論文名稱: 金和銀金屬催化炔轉化成高度官能化之有機分子骨架
Gold and Silver-Catalyzed Transformations of Alkynes into Highly Functionalized Organic Framework
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員: 侯敦仁
Hou, Duen-Ren
李文泰
Li, Wen-Tai
吳明忠
Wu, Ming-Jung
蔡易州
Tsai, Yi-Chou
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 589
中文關鍵詞: 催化
外文關鍵詞: Catalysis, Gold, Silver
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract (Chinese)

    本篇論文描述利用金或銀催化劑開發新型有機合成轉化,利用這些金屬催化劑溫和、具選擇性及有效率和易取得的基質合成轉化成廣泛有用得複雜有機分子等特性,為了容易理解,將分成四個章節進行介紹。

    第一章關於1,4-二炔-3-醇與異噁唑或苯並異噁唑的金催化[4+1]環化反應生成吡咯的衍生物。此反應之化學選擇性的控制是透過起初異噁唑攻擊較少立體阻礙的炔烴形成金碳烯,進一步誘導第二個炔基進行12-遷移反應。利用1,4-二炔-3-醇、異噁唑甚至苯並異噁唑基質合成高度應用於廣泛的範圍。

    第二章α-重氮酯和亞胺之間的金屬催化反應生成獨特的氮丙啶衍生物已經廣為人知,而本篇文獻發表關於分別利用叔丁氧基羰基保護基衍生亞胺以及重氮酯在金和銀金屬催化下的兩種新型烯烴化反應。我們的反應機構研究顯示這些新型烯烴化反應涉及到起初重氮酯對金屬及亞胺複合體形成曼尼希加成中間體,隨後透過羅斯坎普反應形成α-芳基-β-氨基丙烯酸酯或者透過形成銀碳烯生成β-芳基-β-氨基丙烯酸酯。

    第三章關於2-(1-炔基)-2-烯烴-1-酮與蒽合成的金催化[4+3]環化反應生成具有高度外立體選擇性(dr> 25:1)環氧苯二氮類產物。這種新型的金催化效用能應用於廣闊的基質,更重要的是這種[4+3]環化反應運用掌性金催化劑在溫和環境條件(DCM, 0 °C)下表現鏡像選擇性形式已經發展良好的結果,其鏡像異構物過剩率(ee%)範圍在88.0-99.9%之間。根據密度泛函理論計算結果,我們逐步推測出反應進行路徑以合理化優異的外立體選擇性。
    第四章描述利用2-(1-炔基)-2-烯烴-1-酮和乙烯基重氮酮在金催化反應下生成非對稱芳香雜環取代三芳基甲烷。在催化反應過程中,乙烯基重氮酮攻擊含金呋喃基芐基陽離子形成觀察到的C(1)-加成產物,我們也注意到乙烯基重氮酮可以環化生成吡唑衍生物並可與呋喃基芐基陽離子反應生成含吡唑三芳基甲烷為N(5)-加成路徑。


    Abstract
    This dissertation describes the development of new synthetic organic transformations by using gold or silver catalysts. The use of these metals enables mild, selective, and efficient transformations of readily available substrates into wide range of synthetically useful complex organic molecules. For ease of understanding, this dissertation is divided into four chapters.
    Chapter one is comprised of novel gold-catalyzed [4+1]-annulation reactions between 1,4-diyn-3-ols and isoxazoles or benzisoxazoles to yield pyrrole derivatives. The reaction chemoselectivity is controlled by an initial attack of an isoxazole at a less hindered alkyne to form gold carbenes, further inducing a 1,2-migration of a second alkyne group. A broad substrate scope of 1,4-diyn-3-ols, isoxazoles, and even benzisoxazoles highlighted the reaction utility.

    Chapter two is comprised of two new olefination reactions between N-Boc imines and diazo esters, to yield phenylaminoacrylates with one gold catalyst, and to yield phenylaminoacrylates with AgOTf catalyst. Our mechanistic study indicates that both reactions proceed via formation of diazo containing Mannnich-addition intermediates, which subsequently undergo a Roskamp reaction for gold complex and formation of silver carbenes via 1,2-hydrogen shift. We disclose new versions of such imines/diazo ester reactions intermediates, that will be inspiring to design novel catalytic reactions.

    Chapter three is comprised of gold-catalyzed [4+3]-annulations of 2-(1-alkynyl)-2-alken-1-ones with anthranils to yield epoxybenzoazepine products with excellent exo-diastereoselectivity (dr>25:1). The utility of this new gold catalysis is manifested by applicable substrates over a broad scope. More importantly, the enantioselective versions of these [4+3]-cycloadditions have been developed satisfactorily with chiral gold catalysts under ambient conditions (DCM, 0 °C); the ee levels range from 88.0–99.9%. With DFT calculations, we postulate a stepwise pathway to rationalize the preferable exo-stereoselection.

    Chapter four is comprised of gold-catalyzed synthesis of nonsymmetrical heteroaryl-substituted triarylmethanes using 2-(1-alkynyl)-2-alken-1-ones and vinyldiazo ketones is described. In this catalytic sequence, vinyldiazo ketones attack gold-containing 3-furylbenzyl cations to form the observed C(1)-addition products. We also note that vinyldiazo ketones can be thermally cyclized to yield pyrazole derivatives, which can react with 3-furylbenzyl cations to afford pyrazole-containing triarylmethanes, corresponding to a N(5)-addition path.

    CONTENTS Abstract II Acknowledgement VI Table of Content VIII List of Schemes XI List of Tables XIV List of Figures XV List of Publications XVII Abbreviations XVIII Chapter 1: Gold-catalyzed [4+1]-Annulation Reactions between 1,4-Diyn-3-ols and Isoxazoles to Construct a Pyrrole Core Introduction 2 Result and Discussion 18 Conclusion 29 Experimental Procedure 29 Spectral Data 32 References 46 X-ray Crystallographic Data 51 1H and 13C NMR Spectra 54 Chapter 2: Two Distinct Ag(I)- and Au(I)-Catalyzed Olefinations between -Diazo Esters and N-Boc-derived Imines Introduction 121 Result and Discussion 130 Conclusion 149 Experimental Procedure 149 Spectral Data 154 References 172 X-ray Crystallographic Data 175 1H and 13C NMR Spectra 178 Chapter 3: Gold(I)-Catalyzed Highly Diastereo- and Enantioselective Cyclization–[4+3] Annulation Cascades between 2-(1-Alkynyl)-2-alken-1-ones and Anthranils Introduction 279 Result and Discussion 289 Conclusion 310 Experimental Procedure 310 Spectral Data 314 References 332 X-ray Crystallographic Data 335 Computational Details 339 1H and 13C NMR Spectra 360 Chapter 4: Gold(I)-catalyzed Reactions between 2-(1-Alkynyl)-2-alken-1-ones and Vinyldiazo Ketones for Divergent Synthesis of Non-symmetric Heteroaryl-substituted Triarylmethanes: N- versus C-attack Paths Introduction 450 Result and Discussion 459 Conclusion 477 Experimental Procedure 477 Spectral Data 479 References 498 X-ray Crystallographic Data 501 1H and 13C NMR Spectra 505

    Chapter 1 References
    1. (a) Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; T. Hudlicky, Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1. (b) Yamashita, K.; Yamamoto, Y.; Nishiyama, H. J. Am. Chem. Soc. 2012, 134, 7660.
    2. (a) Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (c) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351. (d) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
    3. (a) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326. (b) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431. (c) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208.
    4. (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505. (b) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002. (c) Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480. (d) López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029. (e) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. (f) For cyclization of allenynes with nucleophiles, see: Lemie´re, G.; Gandon, V.; Agenet, N.; Goddard, J.; de.Kozak, A.; Aubert, C.; Fensterbank, L.; Malacria, M. Angew. Chem. Int. Ed. 2006, 45, 7596. (g) Gorin, D. J.; Dube, P.;Toste, F. D. J. Am.Chem. Soc. 2006, 128, 14480.
    5. (a) Smidt, J.; Hafner, W.; Jira, R.; Sieber, R.; Sedlmeier, J.; Sabel, J. Angew. Chem. 1962, 74, 93; Angew. Chem. Int. Ed. 1962, 1, 80. (b) Fukuda, Y.; Utimoto, K. Bull. Chem. Soc. Jpn. 1991, 64, 2013. (c) Hashmi, A. S. K.; Schward, L.; Choi, J.-H.; Frost, T. M. Angew. Chem. Int. Ed. 2000, 39, 2285.
    6. (a) Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles, 1987, 25, 297. (b) Fukuda, Y.; Utimoto, K. Synthesis, 1991, 975. (c) Lok, R.; Leone, R. E.; Williams, A. J. J. Org. Chem. 1996, 61, 3289. (d) Arcadi, A.; Giuseppe, S. D.; Marinelli, F.; Rossi, E. Adv. Synth. Catal. 2001, 343, 443.
    7. (a) Hutchings, G. J. Gold Bull. 1996, 29, 123. (b) Hutchings, G. J. Catal. Today, 2002, 72, 11.
    8. For selected examples, see: (a) Manning, J. R.; Davies, H. M. J. Am. Chem. Soc. 2008, 130, 8602-8603. (b) Coffman, K. C.; Palazzo, T. A.; Hartley, T. P.; Fettinger, J. C.; Tantillo, D. J.; Kurth, M. J. Org. Lett. 2013, 15, 2062-2065. (c) Zhou, A. H.; He, Q.; Shu, C.;Yu, Y. Liu, F. S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W Chem. Sci. 2015, 6, 1265-1271. (d) Kawai, H.; Tachi, K.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2011, 50, 7803-7806. (e) Liu, X. L.; Han, W. Y.; Zhang, X. M.; Yuan, W. C. Org. Lett. 2013, 15, 1246-1249. (f) Takikawa, H.; Takada, A.; Hikita, K.; Suzuki, K. Angew. Chem. Int. Ed. 2008, 47, 7446-7449. (g) Lei, X.; Gao, M.; Tang, Y. Org. Lett. 2016, 18, 4990-4993. (h) Galenko, E. E.; Galenko, A. V.; Khlebnikov, A. F.; Novikov, M. S. RSC Adv. 2015, 5, 18172-18176. (i) Pusch, S.; Opatz, T. Org. Lett. 2014, 16, 5430-5433
    9. (a) Soriano, E.; J. Marco-Contelles. Acc. Chem. Res. 2009, 42, 1026. (b) Lee, S. I.; N. Chatani. Chem. Commun. 2009, 371. (c) Kirsch S. F. Synthesis 2008, 3183. (d) Muzart. J. Tetrahedron, 2008, 64, 5815. (e) Widenhoefer R. A. Chem. Eur. J. 2008, 14, 5382.
    10. (a) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2008, 47, 6754. (b) Bongers, N.; Krause. N. Angew. Chem. Int. Ed. 2008, 47, 2178. (c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. (d) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657.
    11. (a) Boorman, T. C.; Larrosa. I. Chem. Soc. Rev. 2011, 40, 1910. (b) Bandini. M. Chem. Soc. Rev. 2011, 40, 1358. (c) Krause, N.; Winter. C. Chem. Rev. 2011, 111, 1994. (d) Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. (e) Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536. (f) Das, A.; Sohel, S. M. A.; Liu, R.-S. Org. Biomol. Chem. 2010, 8, 960.
    12. Reviews for gold-catalyzed annulation or cycloaddition reactions, (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (b) Patil, N. T.; Yamamoto, Y. ARKIVOC 2007, 5, 6. (c) Abu Sohel, S. Md.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. (d) Fürstner, A.; Davies, P. W. Angew Chem. Int. Ed. 2007, 46, 3410. (e) Shapiro, N. D.; Toste, F. D. Synlett, 2010, 675.
    13. (a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448−4458. (b) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966−977. (c) Zhang, L. Acc. Chem. Res. 2014, 47, 877−888. (d) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226−7236.
    14. (a) Darses, B.; Rodrigues, R.; Neuville, L.; Mazurais, M.; Dauban, P. Chem. Commun. 2017, 53, 493−508. (b) Xiong, T.; Zhang, Q. Chem. Soc. Rev. 2016, 45, 3069−3087. (c) Bizet, V.; Hendriks, C. M. M.; Bolm, C. Chem. Soc. Rev. 2015, 44, 3378−3390. (d) Uchida, T.; Katsuki, T. Chem. Rec. 2014, 14, 117−129. (e) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881−7929.
    15. (a) Uni, V.; Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160–4161. (b) Li, G.; Zhang, L. Angew. Chem. Int. Ed. 2007, 46, 5156–5159.
    16. Yeom, H. S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
    17. (a) Xiao, J.; Li, X. Angew. Chem. Int. Ed. 2011, 50, 7226. (b) Zhang, L. Acc. Chem. Res. 2014, 47, 877. (c) Zheng, Z; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448. (d) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
    18. (a) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc.,2005, 127, 11260. (b) Tian, X.; Song, L.; Rudolph, M.; Rominger, F.; Oeser, T.; Hashmi, A. S. K. Angew. Chem., Int. Ed., 2019, 58, 3589. (c) Davies, P. W.; Cremonesi, A.; Dumitrescu, L. Angew. Chem., Int. Ed., 2011, 50, 8931. (d) Prechter, A.; Henrion, G.; Faudot dit Bel, P.; Gagosz, F. Angew. Chem., Int. Ed., 2014, 53, 4959 (e) Jadhav, P. D.; Lu, X.; Liu, R.-S. ACS Catal., 2018, 8, 9697.
    19. For gold-catalyzed reactions of isoxazoles or anthranils with alkynes, see selected reviews: (a) Li, L.; Tan, T. D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 5, 8483; (b) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348.
    20. Lei, X.; Li, L.; He, Y.-P.; Tang, Y. Org. Lett. 2015, 17, 5224.
    21. Manning, J. R.; Davies, H. M. L. Tetrahedron, 2008, 64, 6901.
    22. Manning, J. R.; Davies, H. M.; J. Am. Chem. Soc. 2008, 130, 8602
    23. Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem. Int. Ed. 2017, 56, 605.
    24. (a) Martinez-Farina, C. F.; Jakeman, D. L. Chem. Commun. 2015, 51, 14617. (b) Martnez, W. R.; Milito, G. C. G.; da Silva, T. G.; Silva, R. O.; Menezes, P. H. RSC Adv. 2014, 4, 14715. (c) Shah, F.; Mukherjee, P.; Gut, J.; Legac, J.; Rosenthal, P. J.; Tekwani, B. L.; Avery, M. A. J. Chem. Inf. Model. 2011, 51, 852. (d) Mueller, R.; Rodriguez, A. L.; Dawson, E. S.; Butkiewicz, M. T.; Nguyen, T.; Oleszkiewicz, S.; Bleckmann, A.; Weaver, C. D.; Lindsley, C.W.; Conn, P. J.; Meiler, J. ACS Chem. Neurosci. 2010, 1, 288.
    25. (a) Hashmi, A. S. K., Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem., Int. Ed., 2005, 44, 2798. (b) Martín-Matute, B.; Nevado, C. D.; Cárdenas, J.; Echavarren, A. M. J. Am. Chem. Soc., 2003, 125, 5757.
    26. Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 1026.
    27. (a) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028. (b) Llpez, F.; MascareÇas, J. L. Beilstein J. Org. Chem. 2011, 7, 1075. (c) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180. (d) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066. (e) Qian, D.; Zhang, J. Chem. Rec. 2014, 14, 280.
    28. For bioactive molecules containing pyrrole cores, see: (a) Estvez, V.; Villacampa, M.; Menndez, J. C. Chem. Soc. Rev. 2014, 43, 4633. (b) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. Beilstein J. Org. Chem. 2011, 7, 442. (c) Carson, J. R.; Carmosin, R. J.; Pitis, P. M.; Vaught, J. L.; Almond, H. R.; Stables, J. P.; Wolf, H. H.; Swinyard, E. A.; White, H. S. J. Med. Chem. 1997, 40, 1578.
    29. For bioactive molecules containing imidazo[1,2-a] pyridine cores, see: (a) Langer, S. Z.; Arbilla, S.; Benavides, J.; Scatton, B. Adv. Biochem. Psychopharmacol. 1990, 46, 61. (b) Boerner, R. J.; Moller, H. J. Psychopharmakother. 1997, 4, 145. (c) Gudmundsson, K.; Boggs, S. D. PCT Int. Appl. WO2006026703, 2006.
    30. For a 1,5-acyl shift, see: (a) Rao, W.; Koh, M.; Kothandaraman, J. P.; Chan, P. W. H. J. Am. Chem. Soc. 2012, 134, 10811. (b) Leboeuf, D.; Simonneau, A.; Aubert, C.; Malacria, M.; Gandon, V.; Fensterbank, L. Angew. Chem. Int. Ed. 2011, 50, 6868. (c) Rao, W.; Koh, M. J.; Chan, P. W. H. J. Org. Chem. 2013, 78, 3183.
    31. Liu, R.-S.: Giri, S. S. ACS Catal. 2019, 9, 7328−7334
    32. Zhou, A. H.; He, Q.; Shu, C.; Yu, Y. F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265-1271
    33. For gold-catalyzed N-O functioanlizations of alkynes, see selected review: (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (b) Li, L.; Tan, T.-D.; Zhang, Y.-Q.; Liu, X.; Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483.
    34. For [3+2] nitrones/alkenes, see selected reviews: (a) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products, (Eds.: Padwa, A.; Pearson, W. H.), Wiley; New York, 2002. (b) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366. (c) Stanley, L. M.; Sibi, M. P.; Chem. Rev. 2008, 108, 2887. (d) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863. (e) Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (f) Confalone, P. N.; Huie, E. M. Org. React. 1988, 36, 1.
    35. For [4+2]-cycloadditions of nitroso/dienes, see selected reviews: (a) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5630. (b) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2031. (c) Vogut, P. F.; Miller, M. J. Tetrahedron. 1998, 54, 1317. (d) Denmark, S.E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
    36. (a) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794. (b) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688.
    37. (a) Zeng, Z.; Jin, H.; Xie, J.; Tian, B.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Org. Lett. 2017, 19, 1020. (b) Chen, M.; Sun, N.; Chen, H.; Liu, Y. Chem. commun. 2016, 52, 6324. (c) Xu, W.; Wang, G.; Sun, N.; Liu, Y. Org. Lett. 2017, 19, 3307.
    38. (a) see ref. 8a. (b) Hsu, Y.-C.; Hsieh, S.-A.; Li, P.-H.; Liu, R.-S. Chem. Commun. 2018, 54, 2114.
    39. For gold-catalyzed [4+1]-annulations, see selected examples: (a) Wang, J.; Yao, X.; Wang, T.; Han, Zhang, J.; Zhang, X.; Wang, P.; Zhang, Z. Org. Lett. 2015, 17, 5124. (b) Zhu, C.; Xu, G.; Sun, J. Angew. Chem. Int. Ed. 2016, 55, 11867. (c) Wang, Y.-H.; Muratore, M. E.; Rong, Z.-T.; Echavarren, A. M. Angew. Chem., Int. Ed. 2014, 53, 14022. (d) Yu, Z.; Qiu, H.; Liu, L.; Zhang, J. Chem. Commun. 2016, 52, 2257. (e) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254. (f) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
    40. For gold-catalyzed synthesis of pyrrole derivatives from alkynes see: (a) Gorin, D. J.; Davies, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 11260. (b) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293. (c) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151. (d) Saito, A.; Konishi, T.; Hanzawa, Y. Org. Lett. 2010, 12, 372. (e) Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. J. Org. Chem. 2015, 80, 11407. (f) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30. (g) Pawar, S. K.; Sahani, R. L.; Liu, R.-S. Chem. Eur. J. 2015, 21, 10843. (h) Davies, P. W.; Martin, N. J. Organomet. Chem. 2011, 696, 159.
    41. Wagh, S. B.; Liu, Liu, R.- S. Chem. Commun., 2015, 51, 15462-15464.
    42. A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127.
    43. Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed., 2017, 56,12736 –12740.

    Chapter 2 References:
    1. Comprehensive reviews on α-diazocarbonyl compounds, see: (a) Ye, T.; McKervey, M. A. Chem. Rev. 1994, 94, 1091. (b) Padwa A.; Austin, D. J. Angew. Chem., Int. Ed. 1994, 33, 1797. (c) Padwa A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223. (d) Doyle, M. P; McKervey M. A.; Ye, T. in Modern Catalytic Methods for Organic Synthesis with Diazo Compounds, Wiley, New York, 1998. (e) Doyle M. P.; Forbes, D. C. Chem. Rev. 1998, 98, 911. (f) Padwa, A. J. Organomet. Chem. 2001, 3, 617. (g) Hodgson, D. M.; Pierard, F. Y. T. M.; Stupple, P. A. Chem. Soc. Rev. 2001, 30, 50. (h) Davies H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861.
    2. For a discussion on nucleophilicity of diazo compounds, see: Bug, T.; Hartnagel, M.; Schlierf, C.; Mayr, H. Chem.–Eur. J., 2003, 9, 4068.
    3. (a) Wenkert, E.; McPherson, A. A. J. Am. Chem. Soc. 1972, 94, 8084. (b) Burkoth, T. L. Tetrahedron Lett. 1969, 57, 5049. (c) Woolsey, N. F.; Khalil, M. H. J. Org. Chem. 1972, 37, 2405.
    4. Jiang, N.; Qu, Z.; Wang, J. Org. Lett. 2001, 3, 2989.
    5. (a) Schollkopf, U.; Frasnelli, H.; Hoppe, D. Angew. Chem., Int. Ed. 1970, 9, 300. (b) Schollkopf, U.; Banhidai, B.; Frasnelli, H.; Meyer, R.; Beckhaus, H. Liebigs Ann. Chem. 1974, 1767.
    6. (a) Pellicciari, R.; Natalini, B. J. Chem. Soc., Perkin Trans. 1977, 1, 1882. (b) Pellicciari, R.; Natalini, B.; Sadeghpour, B. M.; Marinozzi, M.; Snyder, J. P.; Williamson, B. L.; Kuethe, J. T.; Padwa, A. J. Am. Chem. Soc. 1996, 118, 1. (c) Moody, C. J.; Taylor, R. J. Tetrahedron Lett. 1987, 28, 5351.
    7. (a) Padwa, A.; Hornbuckle, S. F. Chem. Rev. 1991, 91, 263–309. (b) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577–6605. (c) Davies, H. M. L.; Denton, J. R. Chem. Soc. Rev. 2009, 38, 3061–3071. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704–724. (e) Ford, A.; Miel, H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981.
    8. For recent reviews on phototransformations of diazo compounds see: (a) Candeias, N.; Afonso, C. Curr. Org. Chem. 2009, 13, 763. (b) Galkina, O. S.; Rodina, L. L. Russ. Chem. Rev. 2016, 85, 537. (c) Ciszewski, L. W.; K. R.-Jasinka, Gryko, D. Org. Biomol. Chem. 2019, 17, 432.
    9. Lee, S.-H.; Han, T.-D.; Yu, K.; Ahn, K.-H. Bull. Korean Chem. Soc. 2001, 22, 449.
    10. Krumper, J. R.; Gerisch, M.; Suh, J. M.; Bergman, R.G.; Tilley, T. D. J. Org. Chem. 2003, 68, 9705-9710.
    11. Ranocchiari, M.; Mezzetti, A. Organimetallics 2009, 28, 3611-3613.
    12. Zhu, Z.; Espenson, J. H. J. Am. Chem. Soc. 1996, 118, 9901-9907.
    13. Lee, S.-H.; Song, I.-W. Bull. Korean Chem. Soc. 2005, 26, 223.
    14. (a) Casarrubios, L.; Perez, J. A.; Brookhart, M.; Templeton, J. L. J. Org. Chem. 1996, 61, 8358-8359 (b) D. Morales, J. Perez, L. Riera, V. Riera, R. C.-Suarez, S. G.-Granda, D. Miguel Organometallics 2002, 21, 1540-1545. (c) J. S. Yadav, B. V. S. Reddy, M. S. Rao, P. N. Reddy, Tetrahedron Lett. 2003, 44, 5275-5278. (d) J. C. Antilla, W. D. Wulff, J. Am. Chem. Soc. 1999, 121, 5099-5100.
    15. (a) Desai, A. A.; Wulff, W. D. J. Am. Chem. Soc. 2010, 132, 13100-13103. (b) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Org. Lett. 2009, 11, 3036-3039. (c) Bew, S. P.; Carrington, R.; Hughes, D. L.; Liddle, J.; Pesce, P. Adv. Synth. Catal. 2009, 351, 2579-2588. (d) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11, 2445-2447. (e) Williams, A. L.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 1612-1613. (f) Bew, S. P.; Liddle, J.; Hughes, D. L.; Pesce, P.; Thurston, S. M. Angew. Chem. Int. Ed. 2017, 56, 5322-5326. (g) Hashimoto, T.; Nakatsu, H.; Watanabe, S.; Maruoka, K. Org. Lett. 2010, 12, 1668-1671. (h) Huang, L.; Wullf, W. D. J. Am. Chem. Soc. 2011, 133, 8892-8895.
    16. Pawar, S. K.; Yang, M.-C.; Su, M.-D.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 5035-5039.
    17. Jiang, N.; Ma, Z.; Qu, Z.; Xing, X.; Xie, L.; Wang, J. J. Org. Chem. 2003, 68, 893-900.
    18. See selected examples: (a) Gao, L.; Kang, B. C.; Hwang, G.; Ryu, D. H. Angew. Chem. Int. Ed. 2012, 51, 8322–8325. (b) Li, W.; Wang, J.; Hu, X.; Shen, K.; Wang, W.; Chu, Y.; Lin, L.; Liu, X.; Feng, X. J. Am. Chem. Soc. 2010, 132, 8532–8533. (c) Hashimoto, T.; Miyamoto, H.; Naganawa, Y.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 11280–11281. (d) Mahmood, J.; M. Hossain, M. J. Org. Chem. 1998, 63, 3333–3336. (e) Holmquist, C. R.; Roskamp, E. J. J. Org. Chem. 1989, 54, 3258–3260.
    19. (a) Meng, L.; Wu, K.; Liu, C.; Lei, A. Chem. Commun. 2013, 49, 5853–5855. (b) Ke, J.; He, C.; Liu, H.; Li, M.; Lei, A. Chem. Commun. 2013, 49, 7549–7551. (c) Zhao, M.; Wang, F.; Li, X. Org. Lett. 2012, 14, 1412–1415. (d) Wang, Y.; Jiang, C. M.; Li, H. L.; He, F. S.; Luo, X.; Deng, W. P. J. Org. Chem. 2016, 81, 8653–8658. (e) Gao, P.; Wang, J.; Bai, Z. J.; Shen, L.; Yan, Y. Y.; Yang, D. S.; Fan, M. J.; Guan, Z. H. Org. Lett. 2016, 18, 6074–6077. (f) Chen, Z. W.; Zheng, L.; Liu, J. European J. Org. Chem. 2019, 3051–3060.
    20. (a) Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. European J. Org. Chem. 2013, 5, 858–861. (b) Nguyen, H. H.; Kurth, M. J. Org. Lett. 2013, 15, 362–365. (c) Mao, X.; Tong, T.; Fan, S.; Fang, L.; Wu, J.; Wang, X.; Kang, H.; Lv, X. Chem. Commun. 2017, 53, 4718–4721. (d) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326–9336. (e) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.; Rottländer, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208–4211.
    21. (a) Gao, P.; Wang, J.; Bai, Z.; Yang, D.; Fan, M. J.; Guan, Z. H. Chem. - An Asian J. 2017, 12, 1865–1868. (b) Zheng, Y.; Li, X.; Ren, C.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. J. Org. Chem. 2012, 77, 10353–10361.
    22. Suri, M.; Jousseaume, T.; Neumann, J. J.; Glorius, F. Green Chem. 2012, 14, 2193–2196.
    23. (a) Toh, K. K.; Sanjaya, S.; Sahnoun, S.; Chong, S. Y.; Chiba, S. Org. Lett. 2012, 14, 2290–2292. (b) Xia, X. F.; Zhang, G. W.; Wang, D.; Zhu, S. L. J. Org. Chem. 2017, 82, 8455–8463.
    24. Yamamoto, S. I.; Okamoto, K.; Murakoso, M.; Kuninobu, Y.; Takai, K. Org. Lett. 2012, 14, 3182–3185.
    25. Noole, A.; Borissova, M.; Lopp, M.; Kanger, T. J. Org. Chem. 2011, 76, 1538–1545.
    26. (a) Huang, L.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133 (23), 8892–8895; (b) Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964–12965; (c) Trost, B. M.; Silverman, S. M. J. Am. Chem. Soc. 2012, 134, 4941–4954; (d) Guo, Q.; Wen, X.; Chen, J. Tetrahedron 2016, 72, 8117–8122.
    27. (a) Torna, T.; Shimokawa, J.; Fukuyama, T. Org. Lett. 2007, 9, 3195–3197; (b) Mao, H.; Lin, A.; Shi, Y.; Mao, Z.; Zhu, X.; Li, W.; Hu, H.; Cheng, Y.; Zhu, C. Angew. Chem. Int. Ed. 2013, 52, 6288–6292; (c) Doyle, M. P.; Dyatkin, A. B. J. Org. Chem. 1995, 60, 3035–3038; (d) Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2013, 135, 58–61.
    28. (a) Makosza, M.; Nizamov, S.; Kwast, A. Mendeleev Commun. 1996, 6, 43–44; (b) Zhao, W.; Lu, Z.; Wulff, W. D. J. Org. Chem. 2014, 79, 10068–10080.

    Chapter 3 References:
    1. Hudlicky, T.; Natchus, M. G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI: Greenwich, CT, 1993; Vol. 2, pp 1–23.
    2. Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon: Oxford, 1990.
    3. Kobayashi, S.; Jorgensen, K. A. Cycloaddition Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002.
    4. Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49–92.
    5. (a) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378. (b) Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. (c) Echavarren, A. M.; Nevado, C. Chem. Soc. Rev. 2004, 33, 431–436. (d) Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221. (e) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994–2009. (f) Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657–1712. (g) Shen, H. C. Tetrahedron 2008, 64, 7847–7870.
    6. Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517–3527.
    7. Melhado, A. D.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638–12639.
    8. Martín-Rodríguez, M.; Nájera, C.; Sansano, J. M.; Wu, F.-L. Tetrahedron: Asymmetry 2010, 21, 1184–1186
    9. Liu, F.; Yu, Y.; Zhang, J. Angew. Chem. Int. Ed. 2009, 48, 5505-5508.
    10. Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem. Int. Ed. 2010, 49, 6669 –6672.
    11. Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2010, 16, 456-459.
    12. Gao, H.; Wu, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2011, 17, 2838-2841.
    13. Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., Int. Ed., 2015, 54, 14849–14852.
    14. Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018−3022.
    15. Wang, Z.-H.; Zhang, H.-H.; Wang, D.-M.; Xu, P.-F.; Luo, Y.-C. Chem. Commun. 2017, 53, 8521.
    16. Cheng, Q.; Xie, J.-H.; Weng, Y.-C.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 5739 –5743.
    17. Singh, R. R.; Skaria, M.; Chen, L. -Y.; Cheng, M.-J.; Liu, R.-S. Chem. Sci. 2019, 10, 1201.
    18. See selected reviews: (a) Hu, F.; Szostak, M. Adv. Synth. Catal. 2015, 357, 2583–2614 (b) Vitale, P.; Scilimati, A. Curr. Org. Chem. 2013, 17, 1986–2000. (c) Sukhorukov, A. L.; Lorfe, S. L. Chem. Rev. 2011, 111, 5004–5041. (d) Grunanger, P.; Vita-Finzi, P.; Dowling, J. E. in: Chemistry of Heterocyclic Compounds, Part 2, Vol. 49, (Ed.: E. C. Taylor. P. Wipf), Wiley, New York, 1999, pp 1–888. (e) Pevarello, P.; Amici, R.; Brasca, M. G.; Villa, M.; Virasi, M. in: Targets in Heterocyclic Systems 1999, 3, 301–339.
    19. (a) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348-1367. (b) Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocyclic and Natural Products, (Eds.: A Padwa, W. H. Pearson), Wiley, New York, 2002. (c) Hashimoto, T.; Maruoka, K. Chem. Rev. 2015, 115, 5366–5412. (d) Stanley, L. M.; Sibi, M. P. Chem. Rev. 2008, 108, 2887–2902. (e) Gothelf, K. V.; Jørgensen, K. A. Chem. Rev. 1998, 98, 863–909. (f) Bodnar, B. S.; Miller, M. J. Angew. Chem. Int. Ed. 2011, 50, 5630–55647; Angew. Chem. 2011, 123, 5746–5764. (g) Yamamoto, Y.; Yamamoto, H. Eur. J. Org. Chem. 2006, 2013–2043. (h) Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137–165.
    20. (a) Gómez-Ayala, S.; Castrillon, J. A.; Palma, A.; Leal, S. M.; Escobar, P.; Bahsas, A. Bioorg. Med. Chem. 2010, 18, 4721–4739. (b) Wan, W. L.; Wu, J. B.; Lei, F.; Li, X. L.; Hai, L.; Wu, Y.; Chin. Chem. Lett., 2012, 23, 1343–1346. (c) Krebs, O.; Kuenti, P.; Michlig, C.; Reuter, K. U.S. Pat. No. 8,343,956 B2, 2013 (d) Sinning, S.; Musgaard, M.; Jansen, M.; Severinsen, K.; Celik, L.; Koldso, H.; Meyer, T.; Bols, M.; Jensen, H. H.; Schiott, B.; Wiborg, O. J. Biol. Chem. 2010, 285, 8363. (e) Miller, E. K.; Chung, K. Y.; Hutcheson, J. P.; Yates, D. A.; Smith, S. B.; Johnson, B. J. J. Anim. Sci. 2012, 90, 1317–1327. (f) Gheorghiade, M.; Konstam, M.A.; Burnett, J.C. JAMA 2007, 297, 1332-1343.
    21. For gold-catalyzed annulation reactions, see selected reviews: (a) Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180-3211. (b) Patil, N. T.; Yamamoto, Y.; Chem. Rev. 2008, 108, 3395-3442. (c) Abu Sohel, S.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269-2281. (d) Muratore, M. E.; Homs, A.; Obradors, C.; Echavarren, A. M. Chem. Asian J. 2014, 9, 3066-3082. (e) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351-3378.
    22. For gold asymmetric catalysis, see: (a) Zi, W.; Toste, F. D. Chem. Soc. Rev. 2016, 45, 4567-4589. (b) Toullec, P. Y.; Pradal, A.; Michelet, V. in: Gold Catalysis A Homogeneous Approch, Vol. 13, (Ed.: F. D. Toste, V. Michelet), Imperial College Press, 2014, pp 445-500. (c) Li, Y.; Li, W.; Zhang, J. Chem. - Eur. J. 2017, 23, 467−512. (d) Wang, Y.-M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889-901.
    23. For gold catalysed reactions of anthranils to yield pyrrole products; see selected papers: (a) Li, L.; Tan, T. D.; Zhang, Y.-Q.; Liu, X. Ye, L.-W. Org. Biomol. Chem. 2017, 15, 8483. (b) Huple, D. B.; Ghorpade, S.; Liu, R.-S. Adv. Synth. Catal. 2016, 358, 1348. (c) Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 794–797; Angew. Chem. 2016, 128, 804–808. (d) Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55, 12688–12692; Angew. Chem. 2016, 128, 12880–12884. (e) Sahani, R. L.; Liu, R.-S. Angew. Chem. Int. Ed. 2017, 56, 12736–12740; Angew. Chem. 2017, 129, 12910–12914. (f) Mokar, B. D.; Jadhav, P. D.; Pandit, Y. B.; Liu, R.-S. Chem. Sci. 2018, 9, 4488–4492.
    24. Kawade, R. K.; Liu, R.-S. Angew. Chem., Int. Ed., 2017, 56, 2035–2039.
    25. Lapa, G. B.; Byrd, G. D.; Lapa, A. A.; Budygin, E. A.; Childers, S. R.; Jones, S. R.; Harp, J. J. Bioorg. Med. Chem. Lett., 2005, 15, 4915-4918
    26. Piancatelli, G.; D’Auria, M.; D’Onofrio, F. Synthesis, 1993, 863.
    27. For Au-containing all-carbon 1,3-dipoles, see selected examples: (a) Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598-12599. (b) Huang, X.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 6398-6399. (c) Schelweis, M.; Dempwolff, A. L.; Rominger, F.; Helmchen, G. Angew. Chem. Int. Ed. 2007, 46, 5598-5601. (d) Teng, T.-M.; Das, A.; Huple, D. B.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 12565-12567; (e) Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 9298-9300. (f) Di, X.; Wang, Y.; Wu, L.; Zhang, Z.-M.; Dai, Q.; Li, W.; Zhang, J. Org. Lett. 2019, 21, 3018−3022. (g) Bai, Y.; Fang, J.; Ren, J.; Wang, Z. Chem. Eur. J. 2009, 15, 8975–8978.
    28. For gold catalyzed [4+3] annulations, see: (a) Trillo, B.; Lopez, F.; Gulias, M.; Castedo, L.; Macscarenas, J. L. Angew. Chem. Int. Ed. 2008, 47, 951–954; Angew. Chem. 2008, 120, 965–968. (b) Faustino, I. A. H.; Lopez, F.; Mascarenas, J. L. Angew. Chem. Int. Ed. 2011, 50, 11496 –11500; Angew. Chem. 2011, 123, 11698–11702. (c) Trillo, B.; Lopez, F.; Montserrat, S.; Ujaque, G.; Castelo, L.; Lledos, A.; Mascarenas, J. L. Chem. Eur. J. 2009, 15, 3336–3339. (d) Giri, S. S.; Liu, R.-S. Chem. Sci. 2018, 9, 2991. (e) Sahani, R. L.; Liu, R.-S. Chem. Commun. 2016, 52, 7482.
    29. For phosphoramidites in asymmetric gold catalysis, see: (a) Liu, F.; Wang, Y.; Ye, W.; Zhang, J. Org. Chem. Front.,2015, 2, 221–225. (b) Navarro, C.; Shapiro, N. D.; Bernasconi, M.; Hirobe, T.; Toste, F. D. Tetrahedron, 2015, 71, 5800–5805. (c) Faustino, I. A. H.; Lopez, F.; Mascarenas, J. L. Angew. Chem., Int. Ed., 2011, 50, 11496–11500. (d) Gonzalez, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc., 2011, 133, 5500–5507.
    30. Poulsen, P. H.; Li, Y.; Lauridsen, V. H.; Jørgensen, D. K. B.; Palazzo, T. A.; Meazza, M.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2018, 57, 10661 –10665.

    Chapter 4 References:
    1. Mondal, S.; Panda, G. RSC Adv. 2014, 4, 28317–28358.
    2. Nair, V.; Thomas, S.; Mathew, S. C.; Abhilash, K. G. Tetrahedron 2006, 62, 6731–6747.
    3. Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170–180.
    4. Duxbury, D. F. Chem. Rev. 1993, 93, 381–433.
    5. Shchepinov, M. S.; Korshun, V. A. Chem. Soc. Rev. 2003, 32, 170–180.
    6. Parai, M. K.; Panda, G.; Chaturvedi, V.; Manju, Y. K.; Sinha, S. Bioorg. Med. Chem. Lett. 2008, 18, 289–292.
    7. Miura, T.; Urano, Y.; Tanaka, K.; Nagano, T.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 8666–8671.
    8. Haugland, R. P. Molecular Probes. The Molecular Probes Handbook. A Guide to Fluorescent Probes and Labeling Technologies, 10th ed.; Life Technologies Corporation: Eugene, USA, 2005.
    9. Urano, Y.; Kamiya, M.; Kanada, K.; Ueno, T.; Hirose, K.; Nagano, T. J. Am. Chem. Soc. 2005, 127, 4888–4894.
    10. Abe, H.; Wang, J.; Furukawa, K.; Oki, K.; Uda, M.; Tsuneda, S.; Ito, Y. Bioconjugate Chem. 2008, 19, 1219–1226.
    11. Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465–1472.
    12. Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. Chem. Soc. Rev. 2009, 38, 2410–2433.
    13. Rottman, C.; Grader, G.; De Hazan, Y.; Melchior, S.; Avnir, D. J. Am. Chem. Soc. 1999, 121, 8533–8543.
    14. Yamaguchi, K.; Tamura, Z.; Maeda, M. Anal. Sci. 1997, 13, 521–522.
    15. Heger, D.; Klánová, J.; Klán, P. J. Phys. Chem. B 2006, 110, 1277–1287.
    16. (a) Mason, C. D.; Nord, F. F. J. Org. Chem. 1951, 16, 722–727. (b) Muthyala, R. in Chemistry and Applications of Leuco Dyes (Eds.: Katrizky, A. R.; Sabongi, G. J.;), Plenum, New York, 1997.
    17. Dothager, R. S.; Putt, K. S.; Allen, B. J.; Leslie, B. J.; Nesterenko, V.; Hergenrother, P. J. J. Am. Chem. Soc. 2005, 127, 8686–8696.
    18. (a) Sujatha, K.; Perumal, P. T.; Muralidharan, D.; Rajendra, M. Indian J. Chem. Sect. B Org. Med. Chem. 2009, 48, 267–272. (b) Narendra, E. R.; Ramakrishna, S.; Govardhan Reddy, K.; Nagaraju, D.; Reddy, Y. N. A. Bioorg. Med. Chem. Lett. 2013, 23, 3954–3958. (c) Singh, P.; Manna, S. K.; Jana, A. K.; Saha, T.; Mishra, P.; Bera, S.; Parai, M. K.; Srinivas, L. K.; Mondal, S.; Trivedi, P. Eur. J. Med. Chem. 2015, 95, 357–368. (d) Palchaudhuri, R.; Nesterenko, V.; Hergenrother, P. J. J. Am. Chem. Soc. 2008, 130, 10274–10281.
    19. Huang, R.; Zhang, X.; Pan, J.; Li, J.; Shen, H.; Ling, X.; Xiong, Y. Tetrahedron 2015, 71, 1540–1546.
    20. Liu, J. X.; Zhu, Z. Q.; Yu, L.; Du, B. X.; Mei, G. J. Shi, F. Synthesis 2018, 50, 3436–3444.
    21. Ruengsangtongkul, S.; Taprasert, P.; Sirion, U.; Jaratjaroonphong, J. Org. Biomol. Chem. 2016, 14, 8493–8502.
    22. Rao, H. S. P.; Rao, A. V. B. Beilstein J. Org. Chem. 2016, 12, 496–504.
    23. Lin, S.; Lu, X. J. Org. Chem. 2007, 72, 9757–9760.
    24. Xia, Y.; Chen, L.; Qu, P.; Ji, G.; Feng, S.; Xiao, Q.; Zhang, Y.; Wang, J. J. Org. Chem. 2016, 81, 10484–10490.
    25. Raj, A. S. K.; Liu, R.-S. Angew. Chem., Int. Ed. 2019, 58, 10980-10984.
    26. For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides, Wiley, New York, 1998. (b) Ford, A.; Miel,H.; Ring, A.; Slattery, C. N.; Maguire, A. R.; McKervey, M. A. Chem. Rev. 2015, 115, 9981- 0080. (c) Cheng, Q.-Q.; Doyle, M. P. Adv. Organomet. Chem. 2016, 66, 1-31. (d) N. J. Thumar, Q. Wei, W. Hu, Adv. Organomet. Chem. 2016, 66, 33-91.
    27. (a) Cheng, Q.-Q.; Yu, Y.; Yedoyan, J.; Doyle, M. P. ChemCatChem. 2018, 10, 488-496. (b) Cheng, Q.-Q.; Deng, Y.; Lankelma, M.; Doyle, M. P. Chem. Soc. Rev. 2017, 46, 5425-5443. (c) López, E.; González-Pelayo, S.; López, L. A. Chem. Rec. 2017, 17, 312-325.
    28. (a) Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2015, 54, 4923-4926. (b) Deng, Y.; Massey, L. A.; Rodriguez Núñez, Y. A.; Arman, H.; Doyle, M. P. Angew. Chem., Int. Ed. 2017, 56, 12292-12296. (c) Cheng, Q.-Q.; Lankelma, M.; Wherritt, D.; Arman, H.; Doyle, M. P. J. Am. Chem. Soc. 2017, 139, 9839-9842. (d) Xu, G.; Zhu, C.; Gu, W.; Li, J.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 883-887. (e) Jadhav, A. M.; Pagar, V. V.; Liu, R.-S. Angew. Chem., Int. Ed. 2012, 51, 11809-11813. (f) Xu, X.; Hu, W.-H.; Doyle, M. P. Angew. Chem. Int. Ed. 2011, 50, 6392-6395.
    29. (a) Wang, X.; Xu, X.; Zavalij, P. Y.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402-16405. (b) Barluenga, J.; Riesgo, L.; López, L. A.; Rubio, E.; Tomás, M. Angew. Chem., Int. Ed. 2009, 48, 7569-7572. (c) Xu, X.; Zavalij, P. Y.; Doyle, M. P. Chem. Commun. 2013, 49, 10287-10289 (d) Lian, Y.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 440-441. (e) Barluenga, J.; Lonzi, G.; Riesgo, L.; López, L. A.; Tomás, M. J. Am. Chem. Soc. 2010, 132, 13200-13202. (f) Pagar, V. V.; Jadhav, A. M.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 20728-20731. (g) López, E.; González, J.; López, L. A. Adv. Synth. Catal. 2016, 358, 1428-1432.
    30. (a) Liu, F.; Yu, Y.; Zhang, J. Angew. Chem., Int. Ed. 2009, 48, 5505-5508. (b) Gao, H.; Zhao, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2010, 16, 456-459. (c) Gao, H.; Wu, X.; Yu, Y.; Zhang, J. Chem. Eur. J. 2011, 17, 2838-2841.
    31. (a) Irfana, J. C. P., Mercy, A. A. H.; Ravindra, S.; Kataria, R.; Nandi, G. C. J. Org. Chem. 2020, 85, 3000-3009. (b) Zhang, J.; Bellomo, A.; Creamer, A. D.; Dreher, S. D.; Walsh, P. J. J. Am. Chem. Soc. 2012, 134, 13765. (c) Taylor, B. L. H.; Harris, M. R.; Jarvo, E. R. Angew. Chem., Int. Ed. 2012, 51, 7790. (d) Yuan, F.-Q.; Gao, L.-X.; Han, F.-S. Chem. Commun. 2011, 47, 5289. (e) Y.-Z.; Li, B.-J.; Li, X.-Y.; Lu, S.; Lin, Z.-J. Shi, Angew. Chem., Int. Ed. 2009, 48, 3817. (f) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882. (g) Esquivias, J.; Arrayas, R. G.; Carretero, J. C. Angew. Chem., Int. Ed. 2006, 45, 629. (h) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 3913.
    32. For transition metal catalytic synthesis of TRAMs, see selected reviews: (a) Kshatriya, R.; Jejurkar, V. P.; Saha, S. Eur. J. Org. Chem. 2019, 3818–3841. (b) Nambo, M.; Crudden, C. M. ACS Catal. 2015, 5, 4734−4742.
    33. (a) Gonzalez, J.; Gonzalez, J.; Calleja, C. P.; Lopez, L. A.; Vicente, R. Angew. Chem., Int. Ed. 2013, 52, 5853 –5857. (b) Mata, S.; Gonzalez, M. J.; Gonzalez, J.; Lopez, L. A.; Vicente, R. Chem. Eur. J. 2017, 23, 1013-1017.
    34. (a) Duxbury, D. F.; Chem. Rev. 1993, 93, 381. (b) Aldag, R. in Photochroism: Molecules and Systems (Eds.: Durr, H.; Bouas- Laurent, H.), Elsevier, London, 1990.
    35. Baker, L. A.; Sun, L.; Crooks, R. M. Bull. Korean Chem. Soc. 2002, 23, 647.
    36. For the use of photosensitizers in photodynamic therapy against cancer, see: (a) Detty, M. R.; Gibson, S. L.; Wagner, S. J. J. Med. Chem. 2004, 47, 3897. For their use as antiproliferative agents, see: (b) Al-Qawasmeh, R. A.; Lee, Y.; Cao, M.-Y.; Gu, X.; Vassilakos, A.; Wright, J. A.; Young, A. Bioorg. Med. Chem. Lett. 2004, 14, 347.
    37. (a) Raj, A. S. K.; Liu, R.-S. Angew.Chem., Int. Ed. 2019, 58,10980-10984. (b) Raj, A. S. K.; Liu, R.-S. Adv. Synth. Catal. 2020, 362, 2517-2522. (c) Marichev, K. O.; Wang, Y.; Carranco, A. M.; Garcia, E. C.; Yu, Z.-X.; Doyle, M. P. Chem. Commun., 2018, 54, 9513-9516.

    QR CODE