簡易檢索 / 詳目顯示

研究生: 楊宜璋
Yang, Yi-Jang
論文名稱: 具隔離聯網及能源收集功能之電動車開關式磁阻馬達驅動系統
AN ELECTRIC VEHICLE SWITCHED-RELUCTANCE MOTOR DRIVE WITH ISOLATED GRID-CONNECTED AND ENERGY HARVESTING CAPABILITIES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 徐國鎧
Shyu, Kuo-Kai
劉添華
Liu, Tian-Hua
胡國英
Hwu, Kuo-Ing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 127
中文關鍵詞: 電動車開關式磁阻馬達電池超電容諧振轉換器切換式整流器維也納切換式整流器變頻器電網至車輛車輛至電網車輛至家庭能源收集
外文關鍵詞: EV, SRM, battery, SC, resonant converter, SMR, Vienna SMR, inverter, grid-to-vehicle, vehicle-to-grid, vehicle-to-home, energy harvesting
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發具聯網及能源收集功能之電動車開關式磁阻馬達驅動系統。前者包含電網至車輛、車輛至家庭及車輛至電網等操作。
    馬達驅動系統由電池經交錯式升壓/降壓介面轉換器供電,具容錯能力。可升壓之直流鏈,增進了電池電壓之選擇彈性及馬達驅動系統之操控性能。蓄電池輔以超電容,減少其變動之充/放電操作。除再生煞車時之回充外,超電容亦可於定速時期進行補充。於電動車馬達驅動控制方面,除適當設計電流及速度控制架構外,亦妥善利用換相前移與直流鏈升壓策略降低高速及/或重載下反電動勢之影響。
    另外,藉由所構裝之雙向諧振轉換器及三相變頻器,所開發之電動車馬達驅動系統得以施行雙向聯網操作。於電網至車輛操作下,車載電池可由單相或三相市電充電,而具良好之電力品質。反之,於車輛至家庭/車輛至電網操作下,所產生之60Hz單相/三相交流電,可供給家用負載,或回送預設之電能至電網。
    最後,建立一基於三相維也納切換式整流器之插入式能源收集架構,車載電池之輔助充電電源可為可收集之三相交流源、單相交流源或直流源提供。


    This thesis presents the development of an electric vehicle (EV) switched-reluctance motor (SRM) drive with grid-connected and energy harvesting capabilities. The former includes grid-to-vehicle (G2V), vehicle-to-home (V2H), and vehicle-to-grid (V2G) operations.
    The motor drive is powered by the battery via an interleaved boost/buck one-leg interface converter with fault-tolerant capability. The battery voltage selection flexibility and motor driving performance enhancement are preserved due to boosted DC-link voltage. The battery is assisted by a supercapacitor (SC) bank in reducing its fluctuated discharging/charging operations. Except for the regenerative braking, the SC is also arranged to be charged during constant speed driving duration. In EV motor driving control, in addition to the properly designed current and speed control schemes, the commutation shifting and the voltage boosting are applied to reduce the effects of back-EMF under higher speeds and/or heavier loads.
    A bidirectional CLLC resonant converter and a three-phase inverter are used to let the developed EV drive perform bidirectional grid-connected operations. In grid-to-vehicle (G2V) operation, the on-board battery can be charged from the single-phase or three-phase mains with good line drawn power quality. Conversely in vehicle-to-home (V2H) and vehicle-to-grid (V2G) operations, the 60Hz single-phase or three-phase AC voltage is generated to power the home appliances or send the preset power to the utility grid.
    Finally, a three-phase Vienna SMR based plug-in energy harvesting mechanism (EHM) is developed. The auxiliary battery charging is provided from the possible harvested three-phase AC source, single-phase AC source or DC source.

    Page ABSTRACT i ACKNOWLEDGEMENTS ii LIST OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xiii CHAPTER 1 INTRODUCTION 1 CHAPTER 2 INTRODUCTION TO SWITCHED-RELUCTANCE MOTOR, ELECTRIC VEHICLE AND GRID-CONNECTED OPERATION 5 2.1 Introduction 5 2.2 Switched-reluctance Motor 5 2.3 SRM Converters 10 2.4 Electric Vehicles 12 2.5 Grid-connected operation of EV 15 2.5.1 EV Chargers 16 2.5.2 Electric Vehicle Service Equipment (EVSE) 17 2.6 Battery and Supercapacitor 18 2.7 Interface Converters 19 2.7.1 Non-isolated Converters 19 2.7.2 Isolated Converters 22 2.8 The Developed EV SRM Drive 24 CHAPTER 3 THE ESTABLISHED BATTERY/SC POWERED EV SRM DRIVE 26 3.1 Introduction 26 3.2 Basic SRM Drive 26 3.2.1 System Configuration 26 3.2.2 Control schemes 30 3.2.3 Measure Results 33 3.3 Battery powered EV SRM Drive 40 3.3.1 System Configuration 40 3.3.2 Battery system 43 3.3.3 Super-capacitor System 46 3.3.4 Voltage Control Scheme 51 3.4 Performance Evaluation of the Battery Powered EV SRM Drive 51 CHAPTER 4 G2V/V2H/V2G OPERATIONS WITH GALVANIC ISOLATION 59 4.1 Introduction 59 4.2 System Configuration 59 4.3 Bidirectional CLLC Resonant DC/DC Converter 61 4.3.1 Operational Principle 61 4.3.2 System Components 64 4.3.3 Measured Results 68 4.4 G2V/V2H/V2G Operations via 1P3W Inverter 73 4.4.1 1P3W Inverter in G2V Charging Operation 74 4.4.2 1P3W Inverter in V2H Discharging Operation 81 4.4.3 1P3W Inverter in V2G Discharging Operation 84 4.5 G2V/V2G Operation via 3P3W Inverter 89 4.5.1 Power Circuit 89 4.5.2 3P3W Inverter in G2V Operation 90 4.5.3 3P3W Inverter in V2G Operation 92 CHAPTER 5 VIENNA SMR BASED ENERGY HARVESTING MECHANISM 95 5.1 Introduction 95 5.2 System Configuration 95 5.3 Three-phase Vienna SMR 95 5.3.1 Circuit Operation 95 5.3.2 Single-phase Equivalent Circuit 99 5.3.3 Design of Power Circuit Components 101 5.3.4 Control Schemes 103 5.3.5 Measured Results 103 5.4 Vienna SMR with Single-phase Input 107 5.4.1 Power Circuit 107 5.4.2 Control Scheme 109 5.4.3 Measured Results 111 5.5 Vienna SMR with DC Source Input 112 5.5.1 Power Circuit 112 5.5.2 Control Schemes 113 5.5.3 Measured Results 114 5.6 Battery Charging Characteristics of Energy Harvesting Mechanism 115 5.6.1 Three-phase AC Input 115 5.6.2 Single-phase AC Input 115 5.6.3 DC Source Input 115 CHAPTER 6 CONCLUSIONS 118 REFERENCES 119

    A. Electric Vehicles and G2V/V2G Operations
    [1] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman, and M. Steinbuch, “Review of optimization strategies for system-level design in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 57-70, 2017.
    [2] L. Zhang, X. Hu, Z. Wang, F. Sun, J. Deng, and D. G. Dorrell, “Multiobjective optimal sizing of hybrid energy storage system for electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1027-1035, 2018.
    [3] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [5] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: Current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, 2015.
    [6] N. Denis, M. R. Dubois, J. P. F. Trovão, and A. Desrochers, “Power split strategy optimization of a plug-in parallel hybrid electric vehicle,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 315-326, 2018.
    [7] H. Gao, Y. Gao, and M. Ehsani, “A neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
    [8] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [9] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
    [10] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
    [11] N. Wada, N. Momma, and I. Miki, “Rotor position estimation method in high speed region for 3-phase SRM used in EV,” in Proc. IEEE ICEMS, pp. 1-5, 2012.
    [12] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: Design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
    [13] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, 2016.
    [14] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, 2017.
    [15] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drive for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, 2017.
    [16] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, 2015.
    [17] B. Kramer, S. Chakraborty, and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [18] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, 2012.
    [19] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin, and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505, May 2012.
    [20] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, 2013.
    [21] T. S. Ustun, C. R. Ozansoy, and A. Zayegh, “Implementing vehicle-to-grid (V2G) technology with IEC 61850-7-420,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 1180-1187, Jun. 2013.
    [22] V. Monteiro, J. G. Pinto, and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, 2016.
    [23] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 3, pp. 81-88, 2016.
    [24] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC Microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
    [25] G. R. Chandra Mouli, J. Schijffelen, M. van den Heuvel, M. Kardolus and P. Bauer, "A 10 kW solar-powered bidirectional EV charger compatible with Chademo and COMBO," in IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1082-1098, Feb. 2019.
    [26] D. Das, N. Weise, K. Basu, R. Baranwal and N. Mohan, "A bidirectional soft-switched DAB-based single-stage three-phase ac-dc converter for V2G application," in IEEE Trans. Transport. Electrific., vol. 5, no. 1, pp. 186-199, March 2019.
    B. Switched-Reluctance Motors and Converters
    [27] R. Krishnam, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, Taylor and Francis, 2001.
    [28] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: A comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [29] Y. A. Kwon, K. J. Shin, and G. H. Rim, “SRM drive system with improved power factor,” in Proc. IEEE ICIE, 1997, vol. 2, pp. 541-545.
    [30] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: A comparative analysis,” in Proc. IEEE ITEC, 2014, pp. 1-6.
    [31] F. Peng, J. Ye, and A Emadi. “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
    [32] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate. “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
    [33] S. Riyadi, “Analysis of C-dump converter for SRM drives,” in Proc. IEEE ICELTICs, pp. 179-184, 2018.
    C. Dynamic Modelling and Controls
    [34] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [35] L. Chenjie, W. Wei, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012.
    [36] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, 2014.
    [37] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, 2015.
    [38] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” IEEE Trans. Ind. Appl., vol. 2, pp. 1212-1218, 2002.
    [39] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong, and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
    [40] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [41] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [42] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [43] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
    [44] S. K. Panda, X. M. Zhu, and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [45] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    D. Commutation Instant Shifting
    [46] J. J. Gribble, P. C. Kjaer, C. Cossar, and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
    [47] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen, and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [48] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [49] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [50] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    [51] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tunings,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
    E. Battery and Supercapacitor
    [52] N. Mukherjee and D. Strickland, “Analysis and comparative study of different converter modes in modular second-life hybrid battery energy storage systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 547-563, 2016.
    [53] T. Rout, M. K. Maharana, A. Chowdhury, and S. Samal, “A comparative study of stand-alone photo-voltaic system with battery storage system and battery supercapacitor storage system,” in Proc. IEEE ICEES, 2018, pp. 77-81.
    [54] M. Padmanabh and M. M. Desai, “Performance and dynamic charge acceptance estimation of different Lithium-Ion batteries for electric and hybrid electric vehicles,” in Proc. IEEE ITEC, pp. 1-5, 2017.
    [55] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics-lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSIM-AMSS Conf., 2015, pp. 444-450.
    [56] O. M. F. Camacho, P. B. Nørgård, N. Rao, and L. M. Popa, “Electrical vehicle batteries testing in a distribution network using sustainable energy,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 1033-1042, 2014.
    [57] A. L. Allègre, R. Trigui, and A. Bouscayrol, “Different energy management strategies of hybrid energy storage system (HESS) using batteries and supercapacitors for vehicular applications,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [58] A. Ostadi, M. Kazerani, and S. Chen, “Hybrid energy storage system (HESS) in vehicular applications: A review on interfacing battery and ultra-capacitor units,” in Proc. IEEE ITEC, 2013, pp. 1-7.
    [59] F. Akar, Y. Tavlasoglu, and B. Vural, “An energy management strategy for a concept battery/ultracapacitor electric vehicle with improved battery life,” in Proc. IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 191-200, 2017.
    [60] J. Shen and A. Khaligh, “A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 223-231, 2015.
    [61] M. Zandi, A. Payman, J. P. Martin, S. Pierfederici, B. Davat, and F. Meibody-Tabar, “Energy management of a fuel cell/supercapacitor/battery power source for electric vehicular applications,” IEEE Trans. Veh. Technol., vol. 60, no. 2, pp. 433-443, 2011.
    [62] K. Zhuge and M. Kazerani, “Development of a hybrid energy storage system (HESS) for electric and hybrid electric vehicles,” in Proc. IEEE ITEC, 2014, pp. 1-5.
    [63] M. B. Camara, H. Galous, F. Gustin, and A. Berthon, “Design and new control of DC/DC converters to share energy between supercapacitors and batteries in hybrid vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 5, pp. 2721-2735, 2008.
    [64] M. B. Camara, H. Gualous, F. Gustin, and A. Berthon, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications-polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
    [65] A. Tina, M. B. Camara, B. Dakyo, and Y. Azzouz, “DC/DC and DC/AC converters control for hybrid electric vehicles energy management-ultracapacitors and fuel cell,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 686-696, 2013.
    [66] X. Huang, H. Tosiyoki, and H. Yoichi, “System design and converter control for super- capacitor and battery hybrid energy system of compact electric vehicles,” in Proc. IEEE ECCE, 2014, pp. 1-10.
    [67] R. E. Araújo, R. d. Castro, C. Pinto, P. Melo, and D. Freitas, “Combined sizing and energy management in EVs with batteries and supercapacitors,” IEEE Trans. Veh. Technol., vol. 63, no. 7, pp. 3062-3076, 2014.
    [68] H. Miniguano, A. Barrado, C. Raga, A. Lázaro, C. Fernández, and M. Sanz, “A comparative study and parameterization of supercapacitor electrical models applied to hybrid electric vehicles,” in Proc. IEEE ITEC, 2016, pp. 1-6.
    [69] N. Bertrand, J. Sabatier, O. Briat, and J. M. Vinassa, “Embedded fractional nonlinear supercapacitor model and its parametric estimation method,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3991-4000, 2010.
    [70] D. B. W. Abeywardana, B. Hredzak, V. G. Agelidisand, and G. D. Demetriades, “Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems,” IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1626-1637, 2017.
    F. DC/DC Converters
    [71] C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, “New integrated multilevel converter for switched reluctance motor drive in plug-in hybrid electric vehicles with flexible energy conversion,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3754-3766, 2017.
    [72] I. P. Farneth, “Design of a phase-shifted ZVS full-bridge front-end DC/DC converter for fuel cell inverter applications,” in Proc. IEEE ITEC, 2014, pp. 1-6.
    [73] C. Kallukaran, L. Unnikrishnan, and R. A. Koshy, “Multi-input interleaved DC-DC converter with low current ripple for electric vehicle application,” in Proc. IEEE ICCTCT, 2018, pp. 1-5.
    [74] L. Kumar and S. Jain “A multiple input dc-dc converter for interfacing of battery/ ultracapacitor in EVs/HEVs/FCVs,” in Proc. IEEE IICPE, 2012, pp. 1-6.
    [75] O. C. Onar, J. Kobayashi, and A. Khaligh, “A fully directional universal power electronic interface for EV, HEV, and PHEV Applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5489-5498, 2013.
    [76] A. Hintz, U. R. Prasanna, and K. Rajashekara, “Novel modular multiple-input bidirectional DC-DC power converter (MIPC) for HEV/FCV application,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3163-3172, 2015.
    [77] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC-DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.
    [78] M. McDonough, “Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6423-6433, 2015.
    [79] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, 2011.
    [80] A. Mallik and A. Khaligh “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, 2017.
    [81] M. Ancuti, M. Svoboda, S. Musuroi, A. Hedes, N. Olarescu, and M. Wienmann, “Boost interleaved PFC versus bridgeless boost interleaved PFC converter performance/efficiency analysis,” in Proc. IEEE ICATE, 2014, pp. 1-6.
    G. On-Board Charger
    [82] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, 2013.
    [83] K. Fahem, D. E. Chariag, and L. Sbita, “On-board bidirectional battery chargers topologies for plug-in hybrid electric vehicles,” in Proc. IEEE GECS, 2017, pp. 1-6.
    [84] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, 2017.
    [85] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, 2014.
    [86] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, 2017.
    [87] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, 2013.
    [88] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, 2011.
    [89] S. Lacroix, E. Laboure, and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [90] S. Haghbin et al., “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. IEEE ICEM, 2010, pp. 1-6.
    [91] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: Review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
    [92] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, 2014.
    [93] I. Subotic, N. Bodo, and E. Levi, “An EV drive-train with integrated fast charging capability,” IEEE Trans. Power Electron., vol. 31, no. 2, pp. 1461-1471, 2016.
    [94] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, 2013.
    [95] S. Kim and F. S. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, 2015.
    [96] M. A. Khan, I. Husain, and Y. Sozer, “Integrated electric motor drive and power electronics for bidirectional power flow between the electric vehicle and DC or AC grid,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5774-5783, 2013.
    [97] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, 2017.
    H. Switch-Mode Rectifiers
    [98] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [99] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
    [100] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp.1833-1843, 2011.
    [101] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Electr. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
    [102] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [103] T. Friedli, M. Hartmann, and J. W Kolar, “The essence of three-phase PFC rectifier systems-Part II” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2013.
    [104] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
    [105] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
    [106] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
    I. Inverters
    [107] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [108] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [109] B. S. Prasad, S. Jain, and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [110] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
    [111] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
    J. Resonant DC/DC converter
    [112] E. S. Kim, S. M. Lee, J. H. Park, Y. J. Noh, H. Xu, and Y. S. Kong, “Resonant DC-DC converter for high efficiency bidirectional power conversion,” in Proc. IEEE APEC, 2013, pp. 2005-2011.
    [113] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, 2013.
    [114] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, 2013.
    [115] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, 2013.
    [116] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC front-end for off-grid battery inverters,” in Proc. IEEE IHTC, 2015., pp. 1-4.
    [117] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., 2015, vol. 1, no. 3, pp. 232-244.
    K. Others
    [118] T. J. Barlow, S. Latham, I. S. McCrae, and P. G. Boulter, “A reference book of driving cycles for use in the measurement of road vehicle emissions,” June, 2009.
    [119] G. C. He, “On a battery/supercapacitor powered EV SRM drive having G2V/V2G and plug- in energy harvesting capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2016.
    [120] K. Y. Chou, “A batter/supercapacitor powered EV SRM drive with bidirectional isolated charger,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.
    [121] Z. W. Guo, “A hybrid source powered EV switched-reluctance motor drive with isolated grid-connected capability,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2018.
    [122] “POWERLITEC04202011 Inductor Cores,” Available: https://elnamagnetics.com/wp- content/uploads/catalogs/Metglas/powerlite.pdf, July 19,2019.

    QR CODE