簡易檢索 / 詳目顯示

研究生: 張瑛驛
Chang, Ying Yi
論文名稱: 分切合整數位控制三相雙向換流器並聯系統
Paralleled Three-Phase Bi-Directional Inverters with D-Σ Digital Control
指導教授: 吳財福
Wu, Tsai Fu
口試委員: 鄒應嶼
江炫樟
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 分切合整數位控制雙向換流器正弦脈衝寬度調變換流器並聯寬廣感值變化
外文關鍵詞: D-Σ digital control, bi-directional inverter, SPWM, paralleled inverter, wide inductance variation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出以正弦脈衝寬度調變(SPWM)方式為基礎的分切合整數位控制
    (D-Σ control),來實現三相三線雙向換流器模組並聯。分切合整數位控制係透過抵消系統參數如直流鏈電壓、切換週期及電感變化對受控體的影響,來設計控制器並得到開關責任比率控制法則。藉由使用此控制法則,每部換流器模組可獨自追蹤自己的參考電流命令,又能同時抑制系統環流。此換流器系統考慮電感值變化和市電諧波失真,並經由分切合整控制來達到市電併聯及整流兼功因修正的功能,可降低電感鐵芯體積。本論文詳細推導分切合整數位控制法則並且使用通式表示,使其能容易地在軟體上實現。在設計與實現上,本論文將電感值隨電感電流的變化存在微控制器中,以利微控制器每週期調變迴路增益。此外,本論文利用主僕式控制的方式,主換流器執行直流鏈穩壓,副換流器追蹤根據直流鏈電流及模組數量計算出的電流命令,來達到均流的效果。
    本研究的主要貢獻包含以下幾點:第一點為採用分切合整數位控制法,可考慮電感值變化且無需傳統 abc 至 dq 軸轉換處理。第二點為提出環流控制方式,無需如傳統採用空間向量調變的方式下加入零序電流補償。第三點為副換流器直接利用直流鏈電流及模組數量,計算出電流命令來達到均流,因此無需額外的中
    控介面來調節穩壓及均流。最後,本研究實作一組三部三相三線雙向換流器模組並聯系統,並經由實測結果驗證本論文所提出的控制法則,可達到均流及降低環流。


    This paper presents an SPWM-based division-summation (D-Σ) digital control for paralleled three-phase grid-connected inverters. This study first derives the plant, and then design the controller to cancel the variation effects of dc voltage, switching period and inductance. With the D-Σ digital control, each inverter can track sinusoidal reference current of each phase independently, eliminating circulation currents. The inverter system can achieve the functions of grid connection and rectification with power factor correction by taking into account wide filter-inductance variation and grid-voltage distortion, reducing core size significantly. The control laws for achieving the desired functions are derived in detail and they are expressed in general forms for readily software programming. In the design and implementation, the inductances corresponding to various inductor currents were measured at the start-up and stored in the controller for scheduling loop gain cycle by cycle. Additionally, this study adopts master-slave control, the master inverter is responsible for DC-bus voltage regulation, while the slave ones track the current command calculated by the DC-bus current and the number of modules to achieve equal current distribution.
    The major contributions of this research can be summarized as follows. First, the control law derived based on D-Σ digital control principle can take care of inductance and grid voltage variations. Secondly, the proposed control strategies can suppress circulating current without using zero-sequence current injection. Thirdly, slave inverters use the DC-bus current and the number of modules to calculate the current command for achieving voltage regulation and equal current distribution. Finally, these paralleled three-phase bi-directional inverters have been implemented and tested. Simulated and experimental results have shown that equal current distribution and suppression of circulating current can be achieved with the proposed control scheme.

    摘 要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 均流控制策略 3 1.2.2 環流控制策略 5 1.3 論文大綱 10 第二章 硬體架構與控制策略 11 2.1 單模組換流器架構 11 2.2 換流器操作模式 12 2.2.1 市電併聯模式 12 2.2.2 整流兼功因修正模式 12 2.3 分切合整數位控制 14 2.3.1 換流器建模 14 2.3.2 控制器設計 17 2.3.3 穩定度分析 18 2.3.3 k值證明 20 第三章 多模組換流器並聯應用 24 3.1 系統環流分析比較 24 3.1.1 傳統兩相調變 25 3.1.2 新推導之兩相調變 27 3.1.3 正弦脈衝寬度調變 31 3.1.4 SPWM環流分析 33 3.2 並聯系統控制策略 36 3.2.1 直流鏈穩壓機制 36 3.2.2 系統均流機制 40 第四章 控制韌體規劃 43 4.1 系統韌體架構 43 4.2 微控制器介紹 43 4.3 控制流程 46 4.3.1 主換流器主程式 46 4.3.2 主換流器中斷副程式 48 4.3.3 副換流器主程式 51 4.3.4 副換流器中斷副程式 51 第五章 周邊電路設計 53 5.1 輔助電源 53 5.1.1 PWM控制IC UC3843 53 5.1.2 反馳式轉換器 55 5.1.3 開關驅動電源 56 5.2 直流鏈電壓回授電路 57 5.3 市電電壓回授電路 58 5.4 電感電流回授電路 60 5.5 硬體保護電路 62 5.6 開關隔離驅動電路 63 5.7 直流鏈預充電路 64 第六章 電路製作與實測驗證 66 6.1 電氣規格 66 6.2 實務考量 67 6.2.1 電感值變化 67 6.2.2 峰值電流失真 70 6.2.3 載波同步 71 6.2.4 死區補償 72 6.2.5 減少空載損耗 76 6.2.6 電流分配不均 78 6.3 實測結果 79 6.3.1 市電併聯模式 80 6.3.2 整流兼功因修正模式 83 6.4 損耗分析 85 第七章 結論與未來研究方向 89 7.1 結論 89 7.2 未來研究方向 90 參考文獻 92

    [1] J.-F. Chen and C.-L. Chu, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Trans. on Power Electronics, Vol. 10, No. 5, pp. 547-558, Sept. 1995.
    [2] S. Duan, Y. Megn, J.Xiong, Y. Kang and J. Chen, “Parallel operation control technique of voltage source inverter in UPS,” IEEE PEDS ’99, Vol. 2, pp. 883-887, July 1999.
    [3] K. Siri, T.-F. Wu, and C. Q. Lee, ”Current distribution control schemes for parallel connected converter modules part II: central-limit control,” IEEE Trans. on Aerosp. Electron. Syst., Vol. 28, No. 3, pp. 841-851, July 1992.
    [4] K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belmans, and K. U. Leuven, “A voltage and frequency droop control method for parallel inverters,” IEEE Trans. on Power Electron., Vol. 22, No. 4, pp. 1107– 1115, July. 2007.
    [5] T. Kawabata and S. Higashino, “Parallel operation of voltage source inverters,” IEEE Trans. on Ind. Applicat., Vol. 24, No. 2, pp. 281–287, Mar./Apr. 1988.
    [6] Y. Sato and T. Kataoka, “Simplified control strategy to improve ac-input-current waveform of parallel-connected current-type PWM rectifiers,” in Proc. Inst. Elect. Eng., Vol. 142, No. 4, pp. 246–254, July 1995.
    [7] S. Ogasawara, J. Takagaki, and H. Akagi, “A novel control scheme of a parallel current-controlled PWM inverter,” IEEE Trans. on Ind. Applicat., Vol. 28, No. 5, pp. 1023–1030, Sept./Oct. 1992.
    [8] L. Matakas Jr. and E. Masada, “Analysis of the parallel connection of 3-phase VSC converters,” in Proc. Int. Power Electron. Congr. (IPEC), pp. 854–859, 1995. [9] Y. Komatsuzaki, “Cross current control for parallel operating three-phase inverter,” in Proc. 25th Annu. IEEE Power Electron. Spec. Conf., pp. 943–950, 1994.
    [10] K. Matsui, “A pulsewidth-modulated inverter with parallel-connected transistors using current-sharing reactors,” IEEE Trans. on Power Electron., Vol. 8, No. 2, pp. 186-191, Apr. 1993.
    [11] Z. Ye, D. Boroyevich, J. Y. Choi, and F. C. Lee, “Control of circulating current in two parallel three-phase boost rectifiers,” IEEE Trans. on Power Electron., Vol. 17, No. 5, pp. 609–615, Sep. 2002.
    [12] S. K. Mazumder, “Continuous and discrete variable-structure controls for parallel three-phase boost rectifier,” IEEE Trans. on Ind. Electron., Vol. 52, No. 2, pp. 340–354, Apr. 2005.
    92
    [13] Y. Chen and K. Smedley, “Parallel operation of one-cycle controlled three-phase PFC rectifiers,” IEEE Trans. on Ind. Electron., Vol. 54, No. 6, pp. 3217–3224, Dec. 2007.
    [14] T.-F. Wu, C.-H. Chang, L.-C. Lin and Y.-C. Chang, “Two-phase modulated digital control for three-phase bidirectional inverter with wide inductance variation,” IEEE Trans. on Power Electronics, Vol. 28, No 4, pp. 1598-1607, Apr. 2013.
    [15] T.-F. Wu, C.-H. Chang and L.-C. Lin, “SVPWM-based D-Σ digital control for three-phase grid-connected inverter with wide inductance variation,” 2014 ECCE Conf., 2014. [16] 陳至鈞,三相三線式20kW雙向換流器研製,國立中正大學電機工程研究所 碩士論文,2012年7月。
    [17] 蔡昆宏,分切合整數位控制與兩相或空間向量調變之三相雙向換流器性能比 較,國立清華大學電機工程研究所碩士論文,2014年7月。 [18] K. Li, H.-B. Xu, Q. Ma, L. Ma, X.-S. Xin, “Research on the control of zero-sequence circulating current of paralleled inverters based on Dual-Carrier-Modulator and PR control,” in Proc. ITEC Asia-Pacific. Transportation Electrification, pp. 1-7, 2014.
    [19] C.-T. Pan and Y.-H. Liao “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Trans. on Ind. Electron., Vol. 54, No. 2, pp. 825-838, Apr. 2007.
    [20] Renesas, RX62T Group Datasheet Rev. 1.10, Apr. 2011. [21] UC3843 datasheet.
    [22] HY-50P datasheet.
    [23] LAX 100-NP datasheet.
    [24] Magnetic Powder Cores Ver. 13
    [25] HGTH40N60A4 datasheet

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE