簡易檢索 / 詳目顯示

研究生: 蔡念穎
Tsai, Nian-Ying
論文名稱: 基於合作賽局的機器學習式前景分割方法
A Machine Learning Figure-ground Segmentation Method Based on Cooperative Game
指導教授: 張隆紋
Chang, Long-Wen
口試委員: 陳祝嵩
Chen, Chu-song
劉庭祿
Liu, Tyng-Luh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 36
中文關鍵詞: 合作賽局影像分割機器學習
外文關鍵詞: cooperative game, image segmentation, machine learning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像分割技術是影像處理領域中的一個重要且具挑戰性的任務,並且在最近幾年被廣泛討論著。影像前景物件分割的主要目標是於一張影像中,將其前景物件從背景中分割出來。但是,要從一張影像中定義出前景物件區域並不是一件簡單的任務。在之前,前景物件分割就已經被一些互動式的分割技術成功解決,然而分割的準確度以及便利性不盡理想。不同於先前的方法,在這篇論文中我們提出了一個機器學習式(使用Support Vector Machine分類器)的影像前景物件分割方法來從背景中提取出影像中的前景物件。
    此外,為了提升物件分割的準確率,在學習的步驟我們還運用了一個由Lloyd Shapley所提出的合作賽局理論來評估影像中各種特徵的重要性。在這個賽局中,每一種特徵就代表一個理性的玩家,而特徵的重要性則代表每位玩家對於整個賽局個別的貢獻度。根據我們的實驗結果,相較於其他現有方法,我們所提出的方法在Oxford Flowers 17 和 Caltech-UCSD Birds-200兩個開放式的資料集都有相當不錯的表現。


    Image segmentation is an important and challenging task in image processing, and it is widely discussed in recent years. The main goal of figure-ground image segmentation is to separate foreground objects from their background. But, it is not a simple task to defining the foreground object sections from background in an image. Before, figure-ground segmentation has been addressed successfully by interactive segmentation works. However, it is not an ideal method in accuracy and convenience. Unlike previous methods, in this paper, we present a novel method for figure-ground segmentation with machine learning Mechanism (SVM classifier) to separate the foreground objects from background.
    Furthermore, in order to improve the accuracy of figure-ground segmentation, we also use a cooperative game theory which proposed by Lloyd Shapley to estimate the weight of image features in the training step. In this game, each image feature represents a rational player, and the weight of image features represents the contribution of each player. According to our experiment result, our approach obtains very competitive results on Oxford Flowers 17 and Caltech-UCSD Birds-200 data sets in comparison with other state-of-the-art techniques.

    Chapter 1 Introduction Chapter 2 Related Work Chapter 3 Proposed Method 3.1 Image segmentation & feature extraction 3.2 Classification learning with SVM 3.3 Feature weights estimating by cooperative game 3.4 Object segmentation Chapter 4 Experiment Results Chapter 5 Conclusion Reference

    [1]Rother, Carsten, Vladimir Kolmogorov, and Andrew Blake. "Grabcut: Interactive foreground extraction using iterated graph cuts." ACM Transactions on Graphics (TOG). ACM, 2004, p.309-314.
    [2]Belongie, Serge, Greg Mori, and Jitendra Malik. "Matching with shape contexts." Statistics and Analysis of Shapes. Birkhäuser Boston, 2006, p.81-105.
    [3]Tu, Zhuowen, et al. "Image parsing: Unifying segmentation, detection, and recognition." International Journal of Computer Vision. IJCV, 2005, 63.2 : p.113-140.
    [4]Jiang, Hao. "Human Pose Estimation Using Consistent Max Covering." Pattern Analysis and Machine Intelligence. IEEE Transactions on, 2011, 33.9: p.1911-1918.
    [5]Blake, Andrew, et al. "Interactive image segmentation using an adaptive GMMRF model." Computer Vision-ECCV 2004. Springer Berlin Heidelberg, 2004, p.428-441.
    [6]Lempitsky, Victor, et al. "Image segmentation with a bounding box prior." Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, p.277-284.
    [7]Li, Yin, et al. "Lazy snapping." ACM Transactions on Graphics (ToG). ACM, 2004, 23.3 : p.303-308.
    [8]Cohen, Shay, Eytan Ruppin, and Gideon Dror. "Feature selection based on the Shapley value." Professional Book Center. IJCAI, 2005 , p.65-670.
    [9]Shapley, Lloyd S. "A value for n-person games." RAND CORP SANTA MONICA CA, 1952, No. RAND-P-295.
    [10]Cheng, Li, and Minglun Gong. "Realtime background subtraction from dynamic scenes." Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, p.2066-2073.
    [11]Hayman, Eric, and J-O. Eklundh. "Statistical background subtraction for a mobile observer." Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. IEEE, 2003, p.67-74.
    [12]Sheikh, Yaser, Omar Javed, and Takeo Kanade. "Background subtraction for freely moving cameras." Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, p.1219-1225.
    [13]Sheikh, Yaser, and Mubarak Shah. "Bayesian object detection in dynamic scenes." Computer Vision and Pattern Recognition, CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, p.74-79.
    [14]Boykov, Yuri Y., and M-P. Jolly. "Interactive graph cuts for optimal boundary & region segmentation of objects in ND images." Computer Vision, ICCV 2001. Proceedings. Eighth IEEE International Conference on. IEEE, 2001, p.105-112.
    [15]Arora, Himanshu, et al. "Unsupervised segmentation of objects using efficient learning." Computer Vision and Pattern Recognition, CVPR 2007. IEEE Conference on. IEEE, 2007, p.1-7.
    [16]Verbeek, Jakob, and Bill Triggs. "Region classification with markov field aspect models." Computer Vision and Pattern Recognition, CVPR 2007. IEEE Conference on. IEEE, 2007, p.1-8.
    [17]Winn, John, and Nebojsa Jojic. "Locus: Learning object classes with unsupervised segmentation." Computer Vision, ICCV 2005. Tenth IEEE International Conference on. IEEE, 2005, p756-763.
    [18]Felzenszwalb, Pedro F., and Daniel P. Huttenlocher. "Efficient graph-based image segmentation." International Journal of Computer Vision, IJCV 2004, 59.2 : p.167-181.
    [19]Urquhart, Roderick. "Graph theoretical clustering based on limited neighbourhood sets." Pattern Recognition 1982, 15.3 : p.173-187.
    [20]Zahn, Charles T. "Graph-theoretical methods for detecting and describing gestalt clusters." Computers, IEEE Transactions on 1971, 100.1 : p.68-86.
    [21]Hochbaum, Dorit S., and Vikas Singh. "An efficient algorithm for co-segmentation." Computer Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, p.269-276.
    [22]Chai, Yuning, Victor Lempitsky, and Andrew Zisserman. "Bicos: A bi-level co-segmentation method for image classification." Computer Vision, ICCV 2011 IEEE International Conference on. IEEE, 2011, p.2579-2586.
    [23]Rother, Carsten, et al. "Cosegmentation of image pairs by histogram matching-incorporating a global constraint into mrfs." Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on.. IEEE, 2006, p.993-1000.
    [24]Vedaldi, Andrea, and Brian Fulkerson. "VLFeat : An open and portable library of computer vision algorithms." Proceedings of the international conference on Multimedia. ACM, 2010, p.1469-1472.
    [25]Torkaman, Atefeh, Nasrollah Moghaddam Charkari, and Mahnaz Aghaeipour. "A new classification approach based on cooperative game." Computer Conference, 2009, CSICC 2009. 14th International CSI. IEEE, 2009, p.458-463.
    [26]Nilsback, M-E., and Andrew Zisserman. "A visual vocabulary for flower classification." Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on. IEEE, 2006, p.1447-1454.
    [27]Welinder, Peter, et al. "Caltech-UCSD birds 200." (2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE