簡易檢索 / 詳目顯示

研究生: 蔡文錡
Tsai , Wen Chi
論文名稱: 三明治結構透明導電層於可撓式銅銦鎵硒太陽能電池的製備及分析
Fabrication of Sandwich Films as Alternative Transparent Conducting Layer on Flexible CIGS Solar Cells
指導教授: 闕郁倫
Chueh , Yu Lun
沈昌宏
Shen , Chang Hong
口試委員: 謝東坡
呂宗昕
闕郁倫
沈昌宏
Hsieh , Tung Po
Lu , Chung Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 66
中文關鍵詞: 太陽能電池銅銦鎵硒透明導電層銀奈米線
外文關鍵詞: solar cell, CIGS, transparent conducting layer, silver nanowires
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三明治結構用於太陽能電池上是近來發展的趨勢,以往的研究即有使用過摻鋁氧化鋅(Ag doped ZnO, AZO)當作透明導電層,但AZO本身電阻率並不佳,以致於目前市面上仍以ITO為大宗,所以漸漸地發展出三明治結構,起先是於兩層透明導電層中夾入金屬層以幫助導電,以銅為例:其在16 nm以上電阻率可降至1.6×10-3 Ω-cm,18 nm以上更可降至5.0×10-4 Ω-cm以下,但其最高穿透率卻僅在65 %左右(波長600 nm處),這樣的表現是不符合太陽能電池的期待的,如果以銀作為金屬層的話,雖然電阻率更低,但在低厚度的情況下會有銀聚集的現象,這使得我們所要的透明導電層表面不連續,提高電阻進而影響其電流表現,另外,AZO的可撓性是較ITO差的,其電阻上升的狀況隨著彎曲次數愈多愈嚴重。
    本論文以導入銀奈米線於低溫透明導電層製程,保持奈米線之連續性,亦可達到高穿透率與低電阻之目的,可以加入金屬奈米線後,能夠有效在膜之間形成金屬網絡,在起始彎曲時或有介面及表面不平整的問題,但當彎曲次數超過特定次數後,奈米線即扮演有效的介面連結處以確保其導電特性;在選定特定奈米線參數後以達到高穿透率 (80 %) 及足夠低的片電阻 (20 Ω/sq.)。加入上層AZO情況下的透明導電層其表面粗糙度可降低,另外,也利用摻鋁氧化鋅/銀金屬奈米線/摻鋁氧化鋅三明治結構透明導電層於可撓式銅銦鎵硒太陽能電池之製備,開發出簡易及迅捷的軟式CIGS太陽能電池,在原本玻璃基板上有接近10 %的效率,可在軟性基板上換得至少6 % 以上的表現。此方法於未來能源及行動裝置應用上必有十分龐大之潛力及前景。


    Due to an impending energy shortage, renewable and clean energy should be considered as a next generation energy resource. CIGS is the best thin film solar cell technology among the second generation solar cells owing to its various outstanding characteristics, such as highest absorption coefficient, ease of integration with Si-based technology, and the highest efficiency in thin film solar cell form. As a result, it has already attracted tremendous attention in academic and industrial fields. To date, the highest efficiency of ~21.7 % has been demonstrated by ZSW in Germany. But there is still little research toward CIGS flexible devices for applications on specific building shapes or curve designs on mobile devices.

    In stacked structures used in solar cells AZO has been used as transparent conducting oxide (TCO) before, but its intrinsic resistivity is high so industrial applications prefer to use ITO as alternative. This inspired the development of sandwich structures. Initially, metal layers are embedded between TCOs to enhance conductivity. For example, Cu film over 16 nm can reach 1.6×10-3 Ω-cm or even below 5.0×10-4 Ω-cm when over 18 nm. But the maximum transmittance is just around 65 % (at wavelength of 600 nm) which isn’t good for solar cell applications. In the case of Ag as a metal layer, it has lower resistivity but there’s aggregation when the thickness is too thin that makes the surface of the film discontinuous and leads to higher resistance and worse current. This thesis focuses on a low temperature TCO process using Ag NWs embedded to maintain their optical transparency and electrical conductivity.

    In our research, flexibility of AZO is worse than ITO and that the resistance increases with the number of bending cycles. We can see from in SEM images that AZO has a wider crack seam and line-shaped structure after bending. It’s expected that after Ag NWs are embedded, they can form metal networks between films effectively. There might be interface or surface roughness issues in the beginning of bending but when it reaches certain bending cycles, nanowires can act as effective interface connections to ensure its conductive characteristics are maintained. Finally, we fix the parameters of the Ag NWs with using a figure of merit (FOM) that can be applied on devices. SEM images show the great qualities of Ag NWs clad with AZO continuously. We observe better roughness in AZO/Ag NWs/AZO than for AZO/Ag NWs from AFM measurements. IV plot shows CIGS with sandwich structure TCO has similar performance with one with ITO due to its lower series resistance. Cell with single layer AZO shows lower efficiency than single layer ITO.

    We have already developed a simple and fast production method for flexible CIGS solar cells improving efficiency from 4.4 % to 6 % CIGS solar cells. It’s believed such an approach can further improve future performance and developments for energy and mobile applications based on chalcopyrite photovoltaics.

    摘要 I Abstract (English) II Acknowledgement (Chinese) IV Contents V Figure Caption VII Table Caption IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Basic principle and characteristic of solar cell 3 1.3 CIGS solar cell introduction 8 1.3.1 CIGS introduction and development potential 8 1.3.2 CIGS device structure 9 1.4 Transparent Conducting Oxide Development 14 1.4.1 ITO Demands 14 1.4.2 AZO technology development and application 15 1.4.3 Silver Nanowires Characteristics and Applications 18 Chapter 2 Experiment and Analysis Instrument 20 2.1 Fabrication Instrument 20 2.1.1 Ultrasonic Cleaner 20 2.1.2 In-line Sputter System 21 2.1.3 Large Selenization Furnace 21 2.1.4 Chemical Bath Equipment 22 2.2 Analysis Instrument 24 2.2.1 4-point Probe 24 2.2.2 UV-Visible spectrometer 25 2.2.3 Hall Effect Measurement 25 2.2.4 Scanning Election microscope (SEM) 27 2.2.5 Energy Dispersive Spectrometers (EDS) 27 2.2.6 X-Ray Diffraction (XRD) 28 2.2.7 Atomic Force Microscope (AFM) 29 2.2.8 Solar Cell Simulator System 30 2.2.9 External Quantum Efficiecy (EQE) 33 Chapter 3 Experimental 37 3.1 Silver nanowires synthesis and coating 37 3.1.1 Synthesis of silver nanowires 37 3.1.2 Fabrication of sandwich films, pure AZO and Ag NWs 37 3.2 Flexible CIGS solar cell fabrication 39 3.2.1 Stainless steel cleaning 39 3.2.2 TaN blocking layer deposition 40 3.2.3 Mo back electrode deposition 40 3.2.4 CuInGa precursor sputtering 41 3.2.5 Post-selenization process 41 3.2.6 CdS buffer layer deposition 43 3.2.7 ZnO/AZO window layer and Al top electrode sputtering 44 Chapter 4 Results and Discussion 46 4.1 Optimization of ITO and AZO Films 46 4.1.1 Indium Tin Oxide (ITO) 47 4.1.2 Aluminum Doped Zinc Oxide (2wt %Al:ZnO) 49 4.2 Discussion and Analysis of Sandwich Structures 51 4.2.1 Density of Ag NWs 51 4.2.2 Roughness of Sandwich Structures 55 4.2.3 Electrical Measurement of CIGS With Sandwich Films 57 4.2.4 Flexibility of Transparent Conducting Layers 59 4.2.5 Cell Performance Decay after Bending 60 Chapter 5 Conclusion 64 5.1 Conclusion 64 Reference 65

    1. World Energy Outlook 2011. 2011; Available from: http://nextbigfuture.com/2011/11/world-energy-outlook-2011.html.
    2. 什麼是太陽能? 2012.
    3. Photovoltaic Array Fundamentals. 2015.
    4. Lorenzo, E., Solar Electricity: Engineering of Photovoltaic Systems. 1994.
    5. 邱秋燕, 廖., 郭豐綱. 低成本CIGS太陽電池技術發展. 2009; Available from: http://www.materialsnet.com.tw/DocPrint.aspx?id=8238.
    6. Mitchell, K., et al. Single and tandem junction CuInSe<sub>2</sub> cell and module technology. in Photovoltaic Specialists Conference, 1988., Conference Record of the Twentieth IEEE. 1988.
    7. Green, M.A., et al., Solar cell efficiency tables (version 40). Progress in Photovoltaics: Research and Applications, 2012. 20(5): p. 606-614.
    8. NREL demonstrates 45.7% efficiency for concentrator solar cell. 2014; Available from: http://phys.org/news/2014-12-nrel-efficiency-solar-cell.html.
    9. Wei, S.H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
    10. Mungan, E.S., X.F. Wang, and M.A. Alam, Modeling the Effects of Na Incorporation on CIGS Solar Cells. Ieee Journal of Photovoltaics, 2013. 3(1): p. 451-456.
    11. Report on recent CIGS solar cell manufacturing technology. 2010; Available from: http://www.sneresearch.com/eng/info/show.php?c_id=4847&pg=5&s_sort=&sub_cat=2&s_type=&s_word=.
    12. Rudigier, E., et al., Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960.
    13. Yoon, J.-h., et al., Optical Diagnosis of the Microstructure of Mo Back Contact for CIGS Solar Cell. Meeting Abstracts, 2009. MA2009-02(9): p. 763.
    14. Thin Film Solar Cells. Available from: https://sites.google.com/site/ryanohayre/thinfilmsolarcells.
    15. Minemoto, T., et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 83-88.
    16. Nakada, T., et al., High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer. Solar Energy Materials and Solar Cells, 2001. 67(1–4): p. 255-260.
    17. Nakada, T. and M. Mizutani, 18% efficiency Cd-free Cu(In, Ga)Se-2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Japanese Journal of Applied Physics Part 2-Letters, 2002. 41(2B): p. L165-L167.
    18. Minemoto, T., A. Okamoto, and H. Takakura, Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se2 solar cells. Thin Solid Films, 2011. 519(21): p. 7568-7571.
    19. Nelson, J., The physics of solar cells. 2003.
    20. Cho, D.-H., et al., Influence of growth temperature of transparent conducting oxide layer on Cu(In,Ga)Se2 thin-film solar cells. Thin Solid Films, 2012. 520(6): p. 2115-2118.
    21. Klingshirn, Material, Physics and Applications. ChemPhysChem, 2007. 8(6): p. 782-803.
    22. 張坤榮, ”掺雜鋁於氧化鋅透明導電膜光特性與電特性研究”, 中央大學光電所,碩士論文 (2004). 2004.
    23. Z. L. Pei, C.S., M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, Appl. Phys, Vol 90 , p.3432,2001.
    24. E. Burstein, P.R.
    25. 陳靜怡, "氧化鋅中介層對ITO透明導電膜性質之影響",成功大學材料科學所,碩士論文. 2002.
    26. 銀奈米線替代ITO技術剖析. Available from: http://www.ctimes.com.tw/DispArt/tw/1311261513HI.shtml.
    27. 施敏, 半導體元件物理與製作技術. p. p.648.
    28. 邱繼廣, "氮化鋁保護層應用於離子佈植活化之研究", 中央大學物理所,碩士論文 (2003). 2003.
    29. "AFM beamdetection" 由 Creepin475 - 自己的作品。 使用來自 维基共享资源 - http://commons.wikimedia.org/wiki/File:AFM_beamdetection.png#/media/File:AFM_beamdetection.png 的 創用CC 姓名標示-相同方式分享 3.0 條款授權.
    30. Svetlobni valovi. Available from: http://diameter.si/sciquest/S15.htm.
    31. Oriel Air Mass Filter. Available from: http://www.newport.com/Air-Mass-Filter/377999/1031/info.aspx.
    32. Quantum Efficiency. Available from: http://www.pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency.
    33. Markus Gloeckler “DEVICE PHYSICS OF CuIn1-xGaxSe2 SOLAR‐CELL” Dissertation,Dep. Of Physics, Colorado State University, 2005.
    34. Korte K E, S.S.E.a.X.Y., Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process. J. Mater. Chem. C, 2008. 18: p. 437-441.
    35. Zhu, S., et al., Transferable self-welding silver nanowire network as high performance transparent flexible electrode. Nanotechnology, 2013. 24(33): p. 335202.
    36. Guillén, C., M.A. Martı́nez, and J. Herrero, Accurate control of thin film CdS growth process by adjusting the chemical bath deposition parameters. Thin Solid Films, 1998. 335(1-2): p. 37-42.
    37. Yun, J.-H. and J. Kim, Double transparent conducting oxide films for photoelectric devices. Materials Letters, 2012. 70: p. 4-6.
    38. Journal Crystal Growth 2006. 294: p. 427.
    39. 吳金寶/工研院材化所, AZO透明導電薄膜技術近況發展與應用. 2008.
    40. al., G.J.F.e., Effect of Vacuum Annealing on the Properties of Transparent Conductive AZO Thin Films Prepared by DC Magnetron Sputtering. phys. stat. sol. (a) 193, No. 1, 139–152, 2002.
    41. Haacke, G., J. Appl. Phys., 1976. 47: p. 4086-4089.
    42. Y.-Y. Choi, K.-H.C., H. Lee, H. Lee, J.-W. Kang and H.-K. Kim, Sol. Energy Mater. Sol. Cells, 2011. 95: p. 1615-1623.
    43. K.-H. Choi, J.K., Y.-J. Noh, S.-I. Na and H.-K. Kim, Sol. Energy Mater. Sol. Cells, 2013. 110: p. 147-153.
    44. Fan, J.C.C.B., F. J.; Foley, G. H.; Zavracky, P. M., Transparent Heat-Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation. Appl. Phys. Lett, 1974. 25: p. 693-695.
    45. Areum Kim , Y.W., Kyoohee Woo , Sunho Jeong , and Jooho Moon *, All-Solution-Processed Indium-Free Transparent Composite Electrodes based on Ag Nanowire and Metal Oxide for Thin-Film Solar Cells. Advanced Functional Materials, 2014.
    46. Zhong Chen a, Brian Cotterell b, Wei Wang b, The fracture of brittle thin films on compliant substrates in flexible displays. Engineering Fracture Mechanics, 2002. 69: p. 597-603.
    47. P. Q. M. Nguyen, L.-P.Y., B.-K. Lok and Y.-C. Lam, ACS Appl. Mater. Interfaces, 2014. 6: p. 4011-4016.
    48. X. Wu, J.L., D. Wu, Y. Zhao, X. Shi, J. Wang, S. Huang and G. He, J. Mater. Chem. C, 2014. 2: p. 4044-4050.
    49. H. J. Lee, T.H.P., J. H. Choi, E. H. Song, S. J. Shin, and K.C.C. H. Kim, Y. W. Park and B.-K. Ju, Org. Electron., 2013. 14: p. 416-422.
    50. V. Zardetto, T.M.B., A. Reale and A. D. Carlo, J, Polym. Sci., Part B: Polym. Phys., 2011. 49: p. 638–648.
    51. Zhu, Y., et al., Polyelectrolytes exceeding ITO flexibility in electrochromic devices. J. Mater. Chem. C, 2014. 2(46): p. 9874-9881.
    52. Zhong Chena, Brian Cotterellb, Wei Wangb, Ewald Guenther b, Soo-Jin Chuab, A mechanical assessment of flexible optoelectronic devices. thin solid films, 2001. 394: p. 202-206.
    53. Cotterell B, C.Z., Buckling and cracking of thin films on compliant substrate under compression. Int J Fract, 2000. 104: p. 169-179.
    54. Wuerz, R., et al., Influence of iron on the performance of CIGS thin-film solar cells. Solar Energy Materials and Solar Cells, 2014. 130: p. 107-117.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE