簡易檢索 / 詳目顯示

研究生: 顏肇良
Chao-Liang Yen
論文名稱: 鎝99m(I)標誌Trastuzumab單株抗體作為乳癌細胞造影劑之研究
Study on 99mTc(I) Labeled Trastuzumab Monoclonal Antibody as a Specific Marker of HER2-overexpressed Cells for Breast Cancer Imaging
指導教授: 羅建苗
Jem-Mau Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 74
中文關鍵詞: 單株抗體賀癌平鎝99m
外文關鍵詞: Herceptin, trastuzumab, Tc-99m
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Herceptin是近年來常見的抗乳癌藥物,其主要成份為trastuzumab。Trastuzumab是由DNA重組製成的人類單株抗體(Humanized Monoclonal Antibody,mAb),具高度專一性地親和作用於細胞膜上的人類上皮生長因子接受器第二蛋白(Human Epidermal Growth Factor Receptor 2 Protein,HER2),因而阻礙生長因子與HER2受體結合使細胞增生速度下降,此外,抗體亦能誘導殺手細胞(Killer cell)和巨噬細胞(Macrophage)殺死過度HER2表現的乳癌細胞,達到治療之目的。
    本研究發展出新的鎝-99m標誌方式,並利用trastuzumab對HER2之專一性,將放射性核種鎝-99m(I)標誌於trastuzumab單株抗體,作為HER2過量表現乳癌細胞之造影劑。
    利用無機化學合成方法製備的三羰基鎝化合物([99mTc(CO)3(OH2)3]+)為前驅物並將其標誌於抗體,得到99mTc(I)-trastuzumab,再利用高效能液相層析、分子大小排阻層析法、免疫反應分析與動物實驗來測試其標誌效率、產率、穩定度、對乳癌之活性及專一性。經實驗證明,99mTc(I)-trastuzumab在血清中相當穩定並且仍保有trastuzumab本身之專一性與活性;在生物分佈實驗中,亦發現99mTc(I)-trastuzumab與HER2親和之高度專一性。


    Herceptin, the common anti-breast cancer medicine prevailed in recent years, contains mainly trastuzumab. Trastuzumab, the DNA recombinated humanized monoclonal antibody (mAb), can recognize specifically Human Epidermal Growth Factor Receptor 2 protein (HER2) on cell membrane. HER2 is a 185 kDa transmembrane receptor tyrosine kinase which is overexpressed in 25-30% of breast cancers. As HER2 is blocked by trastuzumab mAb, the growth factor will greatly reduce its binding with the receptor leading to lower the cell proliferation. Moreover, trastuzumab mAb will induce natural killer cells and macrophage to kill the cancer cells to cure breast cancer.
    The study is to develop a novel 99m Tc labeled trastuzumab construct and via the high affinity of trastuzumab toward HER2 to adopt as an imaging agent for HER2 overexpressed breast cancer.
    For the radiolabeling, the tricarbonyl techenium compound, [99mTc(CO)3(OH2)3]+, was synthesized and utilized as the precursor to conjugate rapidly with the monoclonal antibody, trastuzumab, by coordinating with N, O and S donors. The labeled mAb, 99mTc(I)-trastuzumab, was characterized by high performance liquid chromatography (HPLC) and size-exclusion chromatography (SEC) for its labeling yield and radiochemical purity. In addition, immunoreactivity assay and animal model experiment were undertaken to confirm its in vitro and in vivo stability, immunoreactivity and specific affinity with HER2 overexpressed cells.
    In conclusion, 99mTc(I)-trastuzumab is stable in serum and retains the inherent property and immunoreactivity of trastuzumab. The result of biodistribution also reveals that 99mTc(I)-trastuzumab is of high affinity with HER2-positive BT-474 cells and related animal tumor, in constrast with much lower affinity with HER2-negative MCF-7 models.

    第一章 緒論 第二章 [99mTc(CO)3(OH2)2]+之合成及其特性 第三章 Herceptin之純化 第四章 三羰基鎝99m(I)([99mTc(CO)3(OH2)2]+)標誌trastuzumab 第五章 體外實驗 第六章 動物組織器官生物分部與造影 第七章 討論與結論 第八章 參考文獻

    1.Ralph Weissleder, Umar Mahmood. Molecular Imaging. Radiology 2001; 219:316–333

    2.Tarik F.Massoud, Sanjiv S. Gambhir. Molecular imaging in living subjects:seeing fundamental biological processes in a new light. GENE DEV 2003; 17:545–580.

    3.Seyed K. Imam. Molecular Nuclear Imaging:The Radiopharmaceuticals. CANCER BIOTHER RADIO 2005; 20:163-172

    4.Thomas E. Witzig. Yttrium-90 Zevalin Radioimmunotherapy for Patients With Relapsed B-Cell Non-Hodgkin’s Lymphoma (IDEC-Y2B8) Witzig 2001:259-266

    5.Michelle L. Hansman Whiteman, Aldo N. Serafini. 111In Octreotide Scintigraphy in the Evaluation of Head and Neck Lesions. AJNR 1997; 18:1073–1080

    6.Nasim Khan, Noboru Oriuchi. Review of Fluorine-18-2–Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography (FDG-PET) in the Follow-Up of Medullary and Anaplastic Thyroid Carcinomas. Cancer Control 2005;12:254-260

    7.Wei Chen, Timothy Cloughesy. Imaging Proliferation in Brain Tumors with 18F-FLT PET: Comparison with 18F-FDG. J Nucl Med 2005; 46:945–952

    8.Murugesan Subbarayan, Urs O. Häfeli. A Simplified Method for Preparation of 99mTc-Annexin V and its Biologic Evaluation for InVivo Imaging of Apoptosis After Photodynamic Therapy. J Nucl Med 2003; 44:650–656

    9.Naoki Tokita, Shinji Hasegawa. 99mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis. Eur J Nucl Med Mol Imaging. 2003; 30(2):232-8

    10.Diane E. Milenic, Erik D. Brady. Antibody-Targeted Radiation Cancer Therapy. Nature Reviews 2004; 3:488-498

    11.Olivier Couturier, Stephane Supiot. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging. 2005;32:601-614

    12.R.M. Neve, H. A. Lane, N.E. Hynes. The role of overexpressed HER2 in transformation. ANN ONCOL 2001; 12:S9-S13

    13.Paivikki Kauraniemi, Sampsa Hautaniemi. Effects of Herceptin treatment on global gene expression patterns in HER2-amplified and nonamplified breast cancer cell lines. Oncogene 2004; 23:1010–1013

    14.J. Baselga. Clinical trials of Herceptin (trastuzumab). EUR J CANCER. 2001; 37:S18-S24

    15.Charles A. Janeway, Paul Travers, Mark Walport, Mark Shlomchick. Immunobiology, the immune system in health and disease. 2005, 6th ed.

    16.Kohler G. et al. Continuous Culture of Fused Cells Secreting Antibodies of Predefined Specificity. Nature 1975; 256:495

    17.Paul Carter, Len Presta, Cornelia M. Gorman. Humanization of an antii-p185HER2 antibody for human cancer therapy. Pro. Natl Acad Sci 1992; 89:4285-4289

    18.Rita Nahta, Francisco J. Esteva. Herceptin : mechanism of action and resistance. Cancer Letter 2006; 232:123-138

    19.J. Baselga, J. Albanell. Mechanism of action of anti-HER2 monoclonal antibodies. ANN ONCOL 2001;12:S35-S41

    20.Yoichi Nagata, Keng-Hsueh Lan. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6:117-127

    21.R. M. Neve, H. A. Lane, N. E. Hynes. The role of overexpressed HER2 in transformation. ANN ONCOL 2001; 12: S9-S13

    22.Brian Leyland Jones. Trastuzumab: hopes and realities. The LANCET ONCOL 2002; 3:137-144

    23.Yasushi Arano. Recent advanced in 99mTc radiopharmaceuticals. ANN NUCL MED 2002; 16:79-93

    24.Tove Olafsen, Vania E. Kenanova. Optimizing Radiolabeled Engineered Anti-p185HER2 Antibody Fragments for In vivo Imaging. Cancer Res 2005; 65:5907-5916

    25.Anna Orlova, Fredrik Y. Nilsson. Comparative In Vivo Evaluation of Technetium and Iodine Labels on an Anti-HER2 Affibody for Single-Photon Imaging of HER2 Expression in Tumors. J NUCL MED 2006; 47:512-519

    26.David Y. Zhang, Yong Li. Cytotoxicity of breast cancer cells overexpressing HER2/neu by 213Bi-Herceptin radioimmunoconjugate. CANCER LETT 2005; 218:181–190

    27.Kayhan Garmestania, Diane E. Milenica. A new and convenient method for purification of 86Y using a Sr(II) selective resin and comparison of biodistribution of 86Y and 111In labeled Herceptin. NUCL MED BIOL 2005; 29:599–606

    28.Guiping Lia, Yongxian Wang. The experimental study on the radioimmunotherapy of the nasopharyngeal carcinoma overexpressing HER2/neu in nude mice model with intratumoral injection of 188Re-herceptin. NUCL MED BIOL 2005; 32:59–65

    29.Åse M. Ballangrud, Wei-Hong Yang. Stig Palm. Alpha-Particle Emitting Atomic Generator (Actinium-225)-Labeled Trastuzumab (Herceptin) Targeting of Breast Cancer Spheroids: Efficacy versus HER2/neu Expression. CLIN CANCER RES 2004; 10:4489–4497

    30.Paul E. Borchardt, Rui R. Yuan. Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer1. CANCER RES 2003; 63:5084–5090

    31.Daniel W. Mundy, Wael Harb, Tatjana Jevremovic. Radiation binary targeted therapy for HER-2 positive breast cancers: assumptions, theoretical assessment and future directions. Phys Med Biol 2006; 51:1377–1391

    32.Roger Alberto, Roger Schibli. A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules: Synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in Aqueous Solution and Its Reaction with a Bifunctional Ligand. J. Am. Chem. Soc. 1998; 120: 7987-7988

    33.Gary L. Miessler, Donald A. Tarr. Inorganic Chemistry, 2nd ed. 1998

    34.Roger Schibli, Rolf Schwarzbach. Steps toward High Specific Activity Labeling of Biomolecules for Therapeutic Application: Preparation of Precursor [188Re(H2O)3(CO)3]+ and Synthesis of Tailor-Made Bifunctional Ligand Systems. Bioconjugate Chem 2002, 13, 750-756

    35.Jonathan F. Tait, Christina Smith. Development of Annexin V Mutants Suitable for Labeling with Tc(I)-Carbonyl Complex. Bioconjugate Chem 2002, 13, 1119-1123

    36.Klein P.H. Microbiology, Third edition, WCB Company, 1996, p117

    37.Ying Tang, Deborah Scollard. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. NUCL MED COMMUN 2005; 26:427-432

    38.Ying Tang, Judy Wang. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. NUCL MED BIOL 2005; 32: 51–58

    39.Matthew K. Robinson, Mohan Doss. Quantitative Immuno-Positron Emission Tomography Imaging of HER2-Positive Tumor Xenografts with an Iodine-124 Labeled Anti-HER2 Diabody. Cancer Res 1471-1478

    40.Michael R. McDevitt, Dangshe Ma. Design and synthesis of 225Ac radioimmunopharmaceuticals. APPL RADIAT ISOTOPES 2002; 57: 841–847

    41.陳宛柔“三羰基鎝99m標誌HYNIC-cyclic RGD Peptide耦合物作為腫瘤造影劑之研究”清華大學碩士論文,2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE