研究生: |
洪偉翔 Hung, Wei-Hsiang |
---|---|
論文名稱: |
完備流形上的波松方程 A note on Poisson equation on complete manifolds |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
邱鴻麟
Chiu, Hung-Lin 蕭育如 Syau, Yu-Ru |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 加權的龐加萊不等式 、熱核 、格林函數 、波松方程 |
外文關鍵詞: | weighted Poincare inequality, heat kernel, Green's function, Poisson equation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們首先研究熱核和格林函數在Bakry-Emery里奇曲率有下界且加權函數的振幅有上界的平滑度量測度空間的估計。當完備流形滿足加權的龐加萊不等式而且此加權函數有下界,我們得到熱核和格林函數的估計,並且利用這些估計,我們得到波松方程解的存在性及其估計。
Let $(M, g, e^{-f}dx)$ be a smooth metric measure space with the associated Bakry-Emery Ricci curvature bounded below. Assume that the oscillation of weighted function is uniformly bounded from above on any unit ball and weighted function $\rho$ is bounded from below, we study the heat kernel estimates and Green’s function estimates on $M$ if $M$ admits a weighted Poincar$\acute{e}$ inequality. As an application, we then estimate the solution of the Poisson equation on such $M$.
[1] S. Agmon, Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operators,Mathematical Notes, vol.29, Princeton University Press, Princeton, NJ, 1982. Comm. Pure Appl. Math. 28 (1975), 333-354.
[2] P. Li, Curvature and function theory on Riemannian manifolds, Surveys in Di
fferential Geometry: Papers Dedicated to Atiyah, Bott, Hirzebruch and Singer Vol VII,International Press (2000), 375-432.
[3] P. Li,Lecture notes on geometric analysis, Lect. Notes Ser.6, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University Korea, 1993.
[4] P. Li and J. Wang, Complete manifolds with positive spectrum, II. J. Di
erential Geom. 62 (2002), 143-162.
[5] P. Li and J. Wang, Weighted Poincare inequality and rigidity of complete manifolds, Ann. Sci. Ecole Norm. Sup. 39 (2006), 921-982.
[6] P. Li and L. F. Tam, Symmetric Green's Function on Complete Manifold, Amer. J. Math. 109 (1987), 1129-1154.
[7] P. Li and L. F. Tam, Positive harmonic functions on complete manifolds with non-negative curvature outside a compact set, Ann. Math. 125 (1987), 171-107.
[8] B. Malgrange, Existence et approximation des solutions de equations auxderivees partielles et des equations de convolution, Annales del'Inst. Fourier 6 (1955), 271-355.
[9] O. Munteanu, C. J. Sung, and J. Wang, Poisson equation on complete manifolds, Adv. Math. 348 (2019), 81-145.
[10] O. Munteanu, C. J. Sung, and J. Wang, Weighted Poincar e inequality and the Poisson equation, arXiv: 1904.13337v1 [math.DG] 30 Apr. 2019.
[11] O. Munteanu and N. Sesum, The Poisson equation on complete manifolds with positive spectrum and applications, Adv. Math. 223 (2010), 198-219.
[12] O. Munteanu and J. Wang, Smooth metric measure space with nonnegative curvature, Comm. Anal. Geom. 19 (2011), 451-486.
[13] O. Munteanu and J. Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), 55-94.
[14] G. Wei and W. Wylie, Comparison Geometry for the Bakry- Emery Ricci tensor, J. Di
erential Geom. 83 (2009), 377-405.