簡易檢索 / 詳目顯示

研究生: 廖宸樑
Liao, Cheng-Liang
論文名稱: 特殊光柵結構兆赫波返波振盪器
Special Smith-Purcell grating backward-wave oscillator
指導教授: 黃衍介
Huang, Yen-Chieh
口試委員: 林克剛
Lin, Ke-Kang
張存續
Chang, Tsun-Hsu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 69
中文關鍵詞: 返波振盪器兆赫波
外文關鍵詞: THz wave, Backward-oscillator
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兆赫波的應用於醫學、生技以及顯像等方面具有相當的潛力,而我們的目標為設計一個結構簡單、效率較高的裝置。在此論文中,我們提出特殊結構的Smith-Purcell光柵式返波振盪器以產生強力的兆赫波。
      我們先以Matlab計算單面光柵結構的邊界條件以解出其色散關係,並確定其與不同能量之電子束的操作頻率。接著,我們利用MAGIC 2D模擬軟體以觀察該結構和電子的作用情形,並發現兩者所解出的操作頻率甚為接近,進而從中確定先前計算之正確性。在此,我們亦模擬不同的光柵-電子束距離和電子密度對於表面波的飽和時間以及強度的影響,從這些結果觀察出單面光柵當操作於兆赫波範圍嚴苛的起振條件。
      為了製造一個有更高能量耦合效率且容易被加工的結構,「半開放式光柵結構」在此提出。我們利用MAGIC 2D模擬,並發現其產生的表面磁場B_z可達一般Smith-Purcell光柵結構的四倍。於大尺徑電子束的模擬中,我們採用同步輻射中心電子槍的參數,並藉由ASTRA的模擬,確定三個聚焦線圈之磁場為130高斯、120高斯和170高斯分別置於陰極後方21.5公分、33.5公分和50公分。而產生之1A電子束的最小方均束徑可達0.41毫米於陰極後方80.5公分處。然而,於該模擬中,電子束並未完全地受到調制,其原因為不對稱的激發場未能完全涵蓋整個電子束。
      我們亦提出一個包含金屬鍍介電質板和光柵的複合結構,利用光柵結構群聚電子,以額外的介電質激發切忍可夫輻射,而此一結構所激發的表面磁場可達一般光柵結構的六倍。該複合結構亦是對能量耦合有相當的增益。


    THz waves have potential in medicine, biophysics, and imaging. In order to fabricate a simple device with high efficiency, here we propose a special kind of Smith-Purcell grating backward-wave oscillator (BWO) for THz generation.
    First, the boundary conditions of the Smith-Purcell grating are solved by the Matlab code, and the operating frequency is determined by the dispersion relation and the beam line on the Brillouin diagram. Then we simulate the grating-structure by MAGIC 2D to observe the interaction between the structure and the electrons, and the results of the operating frequency in MAGIC 2D agree with the results in Matlab. Also, we simulate the grating with different current densities and beam-grating distances, and find that the restricted beam condition while operating at THz region.
    In order to enhance the coupling efficiency, also to make the structure easy to manufacture, “semi-open” grating is proposed. From the result of MAGIC 2D simulation, we find the magnitude of the B_z field is 4 times as large as the conventional Smith-Purcell grating BWO on the surface of the grating. In thick beam simulation, the parameters of the E-gun in NSRRC are applied to the ASTRA simulation to determine the magnetic field for beam focusing. The calculated magnetic field of the solenoids are 130gauss, 120 gauss and 170 gauss at 21.5cm, 33.5cm and 50cm respectively and the rms beam size equals to 0.41mm at 80.5cm. Yet in MAGIC 2D simulation, the upper portion of the electrons is not well modulated due to the asymmetric excited mode profile.
    We also propose another structure that contains both an optical grating and a dielectric coating metal plate. The dielectric layer provides the condition for stimulated Cherenkov radiation, and the excited magnetic field is 6 times of the field of single-side structure on the surface of the grating. We suppose it is a promising structure for enhancing the energy coupling between the beam and waves.

    Table of Contents 1 List of Figures 2 List of Tables 4 Chapter 1 Introduction 5 1.1 Motivation 5 1.2 Backward-wave oscillator with Smith-Purcell grating 7 1.3 Overview 9 Chapter 2. Smith-Purcell (SP) radiation induced by continuous beam 12 2.1 Fundamental concept of continuous SP radiation 12 2.2 Continuous beam generates SP radiation 19 2.3 Summary 31 Chapter 3. Semi-open SP grating BWO induced by continuous beam 33 3.1 Semi-open structure 33 3.2 Semi-open SP radiation simulation 35 3.3 Summary 45 Chapter 4. Semi-open structure with a thick continuous beam 47 4.1 Overview 47 4.2 The introduction and the simulation of the DC gun. 47 4.3 Semi-open grating design for the NSRRC DC gun 50 4.4 Summary 56 Chapter 5 Dielectric loaded backward-wave oscillator 58 5.1 Overview 58 5.2 Dispersion relation 59 5.3 The MAGIC 2D simulation 62 5.4 Summary 66 Chapter 6 Conclusion and future work 68

    [1] Williams, Gwyn P. "Filling the THz gap—high power sources and applications," Reports on Progress in Physics 69.2, 301 (2005).
    [2] Sirtori, Carlo. "Applied physics: Bridge for the terahertz gap," Nature 417.6885, 132 (2002).
    [3] Pawar, Ashish Y., et al. "Terahertz technology and its applications," Drug invention today 5.2, 157-163 (2013).
    [4] Lewis, Roger A. "A review of terahertz sources," Journal of Physics D: Applied Physics 47.37, 374001 (2014).
    [5] Smith, Stephen Judson, and E. M. Purcell. "Visible light from localized surface charges moving across a grating," Physical Review 92.4, 1069 (1953).
    [6] Donohue, J. T., and J. Gardelle. "Simulation of Smith-Purcell terahertz radiation using a particle-in-cell code," Physical Review Special Topics-Accelerators and Beams 9.6, 060701 (2006).
    [7] Cherenkov, Pavel A. "Visible emission of clean liquids by action of γ radiation," Doklady Akademii Nauk SSSR 2, 451 (1934).
    [8] Schächter, Levi, Beam-wave interaction in periodic and quasi-periodic structures. (Springer Science & Business Media, 2011).
    [9] Smithe, David, and Larry Ludeking. "An eigenmode solution algorithm based on high-order power iteration with fractally ordered shifts," Computer physics communications 106.1-2, 95-104 (1997).
    [10] Ludeking, Larry, et al. Magic User's Manual (MISSION RESEARCH CORP NEWINGTON VA, 1999).
    [11] Zhang, P., Y. Zhang, and M. Tang. "Enhanced THz Smith-Purcell radiation based on the grating grooves with holes array," Optics express 25.10, 10901-10910 (2017).
    [12] Zhang, Ping, et al. "Diffraction radiation of a sub-wavelength hole array with dielectric medium loading," Journal of Physics D: Applied Physics 45.14, 145303 (2012).
    [13] Harsha, KSKS Sree, Principles of vapor deposition of thin films (Elsevier, 2005).
    [14] Townsend, F. "The cathode ray tube as a television display device," 1958 IRE International Convention Record. Vol. 14. IEEE, 1966.
    [15] C.S. Fann, S.Y. Hsu, Peace Chang, C.L. Chen, K.L. Tsai, K.T. Hsu, C.H. Chen,
    J.A. Li, K.K. Lin “Installation of a 100 kV e‐gun test bench” (NSRRC, 2017).
    [16] Richardson, O. W. Thermionic emission from hot bodies, (Watchmaker Publishing, 2003).
    [17] K. Floettmann, “ASTRA User Manual”, http://desy.de/~mpyflo/Astra_dokumentation
    [18] Toshiyuki Shiozawa, Classical Relativistic Electrodynamics; Theory of Light Emission and Application to Free Electron Lasers (Springer-Verlag, Berlin and Heidelberg, 2004).

    QR CODE