簡易檢索 / 詳目顯示

研究生: 歐政勳
oul, jeng-shiun
論文名稱: 室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂及單晶矽懸臂之初步量測分析
Setup of room temperature mechanical loss measurement and preliminary measurement results on fused silica and silicon cantilevers
指導教授: 趙煦
Chao, Shiuh
口試委員: 趙煦
Chao, Shiuh
李政中
Lee, Cheng-Chung
白明憲
Bai, Ming-Sian
唐謙仁
Tang, Chien-Jen
陳至信
Chen, Jyh-Shin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 67
中文關鍵詞: 機械損耗布朗運動
外文關鍵詞: fluctuation dissipation theorem
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   從二十世紀中期以來太空探索越來越頻繁,無論是設計太空載具或是偵測地球以外的星體都需要投入大量的人力物力與尖端的科學技術。到目前為止天文觀測主要偵測電磁波來建立天文資料,但電磁波所挾帶的資訊仍不足夠且電磁波容易被物質吸收,目前美國與歐洲已經有重力波天文觀測台偵測天體但不是直接偵測電磁波而是直接偵測重力波(gravitational wave)來獲取更多的天文資料。從理論得知重力波非常微弱需要提高天文觀測台偵測靈敏度才能偵測到更遠的天文現象,經過研究發現反射鏡上多層光學薄膜的熱擾動(thermal noise)是量測系統頻譜最靈敏部分(~100Hz)雜訊干擾最嚴重的來源。反射鏡主要以多層光學薄膜組成才能有高反射低損耗的光學特性,如能找出熱擾動較小的光學薄膜材料製作高反射鏡就能提升下一代重力波天文觀測台偵測靈敏度,而直接量測熱擾動需要複雜的大型儀器且操作複雜耗時,可藉由量測機械損耗間接得知熱擾動大小。
      筆者於論文中將介紹量測機械損耗的儀器架設與初步量測樣品結果。論文第一章介紹重力波天文台量測原理與動機說明,第二章介紹量測機械損耗方式與儀器架設細節說明,第三章介紹擷取訊號程式設定跟分析數據方式與量測雜訊結果,第四章為量測樣品結果與如何提高樣品品質並確認重覆夾持影響,第五章為儀器操作上需要注意的錯誤與解決方式,第六章針對目前結果提供可以改善的方向,附錄為儀器維護與樣品前置準備


    摘要..................................................... I 誌謝.................................................... II 圖目錄................................................. VII 表目錄........................................................................................................................ XI 第一章 導論 1.1前言................................................................................................................ 1 1.2研究動機. ...................................................................................................... 2 第二章 量測系統介紹與流程 2.1 量測需求 2.1-1 理論公式推導................................................................................... 4 2.1-2量測方式說明.................................................................................... 6 2.2 量測系統介紹 2.2-1 真空腔體及抽氣幫浦 2.2-1-1真空系統............................................................................... 8 2.2-1-2 Turbo pump從chamber分離前後比較.......................... 10 2.2-2真空腔內組件設計........................................................................... 11 2.2-2-1電極板設計.......................................................................... 11 2.2-2-2 Clamp初步設計及修改...................................................... 13 2.2-2-3對準器設計.......................................................................... 20 2.2-2-4 Clamp基座設計對量測的影響.......................................... 21 2.2-3 雷射光路設計.................................................................................. 22 2.2-4 Quadrant detector(光碟機讀寫頭) ................................................... 23 2.2-5 訊號處理 2.2-5-1訊號處理電路設計.............................................................. 25 2.2-5-2 DAQ card........................................................................... 26 2.2-5-3 鎖相放大器(lock-in amplifier)............................................ 27 2.2-6 儀器系統使用細............................................................................... 28 第三章 訊號擷取 與 資料分析 3.1 擷取程式介紹 3.1-1 LabVIEW程式簡介 3.1-1-1擷取迴路說明........................................................................ 29 3.1-1-2 Sampling rate 與 number of samples設定.......................... 30 3.1-2 各種訊號說明 3.1-2-1 原始訊號............................................................................. 31 3.1-2-2 包絡線(envelope)擷取設計................................................ 31 3.1-2-3 鎖相放大器訊號................................................................. 32 3.2 Data參數取得方法 3.2-1 頻譜分析…...................................................................................... 33 3.2-2對包絡線作指數函數曲線擬合...................................................... 34 3.2-2 對鎖相放大器訊號作指數函數曲線擬合....................................... 34 3.3 Noise 來源 3.3-1雷射雜訊............................................................................................ 35 3.3-2電路雜訊............................................................................................ 36 3.3-3環境雜訊............................................................................................ 36 3.3-4 量測誤差............................................................................................ 37   3.3-5結論.................................................................................................... 38 第四章 量測與討論 4.1清洗用具介紹與步驟說明........................................................................... 39 4.2熔融石英玻璃Fused silica ........................................................................... 40 4.2-1強迫驅動Fused silica ......................................................................... 40 4.2-2 Gas damping effect .......................................................................... 41 4.3 Fused silica品質改善 4.3-1 加厚夾持面 4.3-1-1 Optical contact bonding..................................................... 44 4.3-1-2 UV-liquid bonding.............................................................. 45 4.3-1-3 雷射焊接Laser welding....................................................... 46 4.3-1-4 High-temperature soften bonding.................................... 46 4.3-1-5 火焰焊接Flame welding..................................................... 47 4.3-2 高溫退火High temperature annealing .............................................. 48 4.3-3 火焰拋光Flame polishing.................................................................. 48 4.4 單晶矽懸臂Silicon cantilever...................................................................... 49 4.4-1 單拋片測試......................................................................................... 50 4.4-2 雙拋片測試......................................................................................... 52 4.4-3 cantilever厚度影響.......................................................................... 54 4.5 夾持誤差Re-Clamp error………............................................................... 55 第五章 系統維護與常見問題解決方式 5.1 量測程式 5.1-1 DAQ card 校正.............................................................................. 56 5.2-2 LabVIEW 程式擷取錯誤修正...................................................... 56 5.2 Quadrant detector(光碟機讀寫頭)校正光路方式..................................... 57 5.3 訊號失真……………………………………………………....................... 57 第六章 結論與未來展望 6.1 結果討論...................................................................................................... 58 6.2 未來可改進的空間...................................................................................... 58 附錄: A1. Cold cathode gauge 清潔步驟.................................................................... 59 A2. Sample Cleaning & Loading 步驟流程...................................................... 60 A3.從DVD-ROM光碟機得取光學讀寫頭的方式.......................................... 61 A4. silicon cantilever製程(感謝潘皇緯同學提供) .......................................... 62 A5廠商資料....................................................................................................... 62 A6問題解決方式............................................................................................... 63 參考文獻..................................................................................................................... 64

    [1] LIGO Scientific Collaboration Group, “Instrument Science White Paper,” LIGO Document, LIGO-T1100309-V5, pp.7-9, 2011.
    [2] G. M. Harry, T. Bodiya and R. DeSalvo, “Optical coatings and Thermal noise in Precision Measurements,” Cambridge University Press, pp. 24-64 , 2012.
    [3] S. T. Thornton and J. B. Marion, “Classical dynamics of particles and systems, ”
    Brooks Cole, fifth edition, pp. 109-121, 2003.
    [4] D. R. M. Crooks, “Mechanical loss and its significance in the test mass mirrors of gravitational wave detectors,” Ph. D thesis, University of Glasgow, pp.72-75, 2003.
    [5] I. W. Martin, “Studies of materials for use in future interferometric gravitational Wave detectors,” Ph. D thesis, University of Glasgow, pp.31-118, 2009.
    [6] R. Flaminio, J. Franc, C. Michel, N. Morgado, L. Pinard and B. Sassolas, “A
    study of coating mechanical and optical losses in view of reducing mirror thermal
    noise in gravitational wave detectors,” Class. Quantum Grav. 27 ,pp.6-8, 2010.
    [7] OPIC datasheet由工研院李源欽學長協助提供
    [8] http://www.newport.com/Seminar-Notes-Compliance-and-Transmissibility-Cur/ 15460/1033/content.aspx
    [9] A. Ageev, B. Cabrera Palmer, A. De Felice, S. D. Penn and P. R. Saulson, “Very high quality factor measured in annealed fused silica,” Class. Quantum Grav. 21,pp.3887-3892, 2004.
    [10] A. Heptonstall, M. Barton, C. Cantley, A. Cumming, G. Cagnoli, J. Hough,
    R. Jones, R. Kumar, I. W. Martin, S. Rowan, C. Torrie and S. Zech, “Investigati
    -on of mechanical dissipation in CO2 laser-drawn fused silica fibres and welds,”
    Class. Quantum Grav. 27, pp.1-14, 2010.
    [11] C. Comtet, D. Forest ,P. Ganau, G. M. Harry , J. M. Mackowski, C. Michel ,
    J. L. Montorio, N. Morgado, V. Pierro, L. Pinard , I. Pinto and A. Remillieux, “Reduction of tantala mechanical losses in Ta2O5/SiO2 coatings for the next generation of VIRGO and LIGO interferometric gravitational waves detectors,” Proc. Recontre de Moriond, pp.1-13, 2007.
    [12] P. Sneddon, D. Crooks, G. Cagnoli, J. Hough, S. Rowan, M. Fejer, R. Route,
    G. Harry, S. Penn and N. Nakagawa, “Frequency dependent loss in coated silica substrates,” LIGO Document, LIGO-G030194-x0, pp.3-12, 2003.

    [13] D. R. M. Crooks, P. Sneddon, G. Cagnoli, J. Hough, S. Rowan, M. M. Fejer ,
    E. Gustafson, R. Route, N. Nakagawa, D. Coyne, G. M. Harry and A. M. Gretarsson,“Excess mechanical loss associated with dielectric mirror coating on test masses in interferometric gravitational wave detectors,” Class. Quantum Grav. 19, pp.1-16 ,2001.
    [14] D. Ugolini , M. Girard, G. M. Harry and V. P. Mitrofanov , “Discharging fused silica test masses with ultraviolet light,” Physics Letters A. 372 , pp.5741–5744, 2008.
    [15] L. G. Prokhorov and V. P. Mitrofanov, “Space charge polarization in fused silica test masses of a gravitational wave detector associated with an electrostatic drive,” Class. Quantum Grav. 27, pp.1-8, 2010.
    [16] S. Reid, G. Cagnoli, D. R. M. Crooks, J. Hough, P. Murray, S. Rowan, M. M. Fejer , R. Route and S. Zappe, “Mechanical Dissipation in Silicon Flexures,” Physics Letters A, 351, pp.205-211,2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE