研究生: |
林君緯 Lin, Chun-Wei |
---|---|
論文名稱: |
還原態下血小板四號因子於核磁共振儀動態研究 Dynamic investigation of DTT-reduced CXCL4 in NMR |
指導教授: |
蘇士哲
Sue, Shih-Che |
口試委員: |
陳金榜
徐駿森 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 還原態血小板四號因子 、動態 、核磁共振 |
外文關鍵詞: | DTT-reduced CXCL4, dynamic, NMR |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
趨化激素(chemokine)具有吸引白血球的能力以及抑制或是促進血管新生的功能,而它具有什麼功能和他的聚合狀態有關(oligomerization state)。CXCL4(又稱作第四型血小板因子, CXCL4)是第一個被發現具有抑制血管新生的區劃激素。在過去的研究中指出,四聚體的CXCL4 和黏多醣(GAGs)具有很強的結合能力,而單體的CXCL4 就具備和受體結合的能力並進行其下游的反應。趨化激素能以不同型態的多聚體來執行不同的的生理活性,為了精準地調控下游所引發的反應,研究它如何形成聚合狀態是勢在必行的工作。然而在過去有關於趨化激素聚合狀態的研究,大部分都會在聚體接合界面的胺基酸做點突變來做進一步的研究。在過去的研究中可以發現,然而有趣的是,加入還原性試劑二硫蘇糖醇(DTT)能夠將雙硫鍵打斷之外,也能夠改變CXCL4 聚和狀態,使不對稱的四聚體成為對稱的二聚體,這是個嶄新的方式來調控聚體狀態,因此我們決定以加入還原性試劑(DTT)的方式來研究影響聚體形成的重要因素。為了找出由DTT 還原過後的CXCL4 是屬於哪一種的二聚體,我們首先確認還原態下CXCL4 的分子量,接著測量胺基酸骨架和水交換的程度以及R1、R2、NOE 的動態研究。在以上的研究中我們發現到N 端的胺基酸有著不尋常的保護,使其不容易和水接觸,並且和其他趨化激素有著截然不同的動態研究結果。因此我們推測被DTT 還原的CXCL4 比較像CC 型態的雙體,在未來我們會從結構的觀點來證明這個推測。
Chemokines were described for their ability to recruit leukocytes and affect inflammatory. The functions have been controlled by their oligomerization states. CXCL4 (also named platelet factor 4, PF4) is the first chemokine identified with anti-angiogenesis function. Tetrameric CXCL4 has high affinity to Glycosaminoglycans (GAGs) while monomeric CXCL4 has be speculated to bind its protein receptor to trigger the downstream signal. For precisely executing the biological function, certain chemokine oligomers exist under different conditions. To control chemokine oligomerization relies on point mutations on residues at the oligomer interface. Interestingly, removal of disulfide linkages of CXCL4 modulates the oligomerization state from asymmetric tetramer to symmetric dimer. The factor is novel in controlling chemokine oligomers. To figure out the mechanism and dimer type, we checked molecular size, backbone solvent accessibility, and molecular dynamics based on R1, R2 and NOE measurements. We demonstrate that the N-terminal region is with great protection from solvent. We also reveal special dynamics in the N-terminal region. This result is different than other folded chemokines. We speculate that DTT-reduced CXCL4 more likely adopts CC-type dimer fold. To directly answer the question, structural determination will be required in the future.
1. Je-Hung Kuo, Ya-Ping Chen, Jai-Shin Liu, Alexandre Dubrac, Cathy Quemener, Hervé Prats, Andreas Bikfalvi, Wen-guey Wu, and Shih-Che Sue. Alternative C-terminal helix orientation alters chemokine function. Biochemistry 2013; 288: 13522–13533.
2. Smyth SS, et al. Platelet functions beyond hemostasis. Thromb Haemost a2009; 7:1759–1766.
3. Semple JW, et al. Platelets and the immune continuum. Nature Reviews Immunology 2011; 11: 264–274.
4. Michael R. Yeaman. Platelets in defense against bacterial pathogens. Cellular and Molecular Life Sciences. 2010; 67: 525–544.
5. Dirk Lievens, Philipp von Hundelshausen. Platelets in atherosclerosis. Thromb Haemost 2011; 106: 827–838.
6. Ela Karshovska, Christian Weber, Philipp von Hundelshausen. Platelet chemokines in health and disease. Thromb Haemost 2013; 110: 894-902.
7. Zhang, X., Chen, L., Bancroft, D. P., Lai, C. K., and Maione, T. E.. Crystal structure of recombinant human platelet factor 4. Biochemistry 1994; 33: 8361–8366.
8. Hartwig, J. Mechanisms of actin rearrangements mediating platelet activation. Cell Biology. 1992; 118: 1421–1442.
9. Koenen RR, Weber C. Therapeutic targeting of chemokine interactions in atherosclerosis. Naandreat Rev Drug Discov 2010; 9: 141–153.
10. Karshovska E, et al. Expression of HIF-1alpha in injured arteries controls SDF-1 alpha mediated neointima formation in apolipoprotein E deficient mice. Arterioscler Thromb Vasc Biol 2007; 27: 2540–2547.
11. Rory R Koenen, Philipp von Hundelshausen. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nature Medicine 2008; 15: 97-103.
12. Scheuerer B, Ernst M, Durrbaum-Landmann I, et al. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages. Blood 2000; 95: 1158–1166.
13. Aidoudi S, Bujakowska K, Kieffer N, et al. The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS One 2008; 3: 2657–2661.
14. Vincent Braunersreuther, François Mach, Sabine Steffens. The specific role of chemokines in atherosclerosis. Thromb Haemost 2007; 97: 714– 721.
15. Sallouha Aidoudi, Andreas Bikfalvi. CXCL4 in atherosclerosis, possible roles in monocyte arrest and macrophage foam cell formation. Thromb Haemost 2010; 104: 941–948.
16. Sachais BS. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007; 98: 1108–1113.
17. Gleissner CA, Shaked I, Erbel C, et al. CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circulation Research 2010; 106: 203–211.
18. Maione TE, Gray GS, Petro J, et al. Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 1990; 247: 77–79.
19. Lasagni L, Francalanci M, Annunziato F, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. Experimental Medicine 2003; 197: 1537–1549.
20. De S, Razorenova O, Mc Cabe NP, et al. VEGF-integrin interplay controls tumor growth and vascularization. PNAS 2005; 102: 7589–7594.
21. Hofer E, Schweighofer B. Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 2007; 97: 355–363.
22. Perollet, C., Han, Z. C., Savona, C., Caen, J. P., and Bikfalvi, A. Platelet factor 4 modulates fibroblast growth factor 2 (FGF-2) activity and inhibits FGF-2 dimerization, Blood 1998; 91: 3289-3299.
23. Gengrinovitch, S., Greenberg, S. M., Cohen, T., Gitay-Goren, H., Rockwell, P., Maione, T. E., Levi, B. Z., and Neufeld, G. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms, Biological Chemistry 1995; 270: 15059-15065.
24. Sato, Y., Abe, M., and Takaki, R. Platelet factor 4 blocks the binding of basic fibroblast growth factor to the receptor and inhibits the spontaneous migration of vascular endothelial cells. Biochemical and Biophysical Research Communications 1990; 172: 595-600.
25. Hagedorn, M., Zilberberg, L., Lozano, R. M., Cuevas, P., Canron, X., Redondo-Horcajo, M., Gimenez-Gallego, G., and Bikfalvi, A. A short peptide domain of platelet factor 4 blocks angiogenic key events induced by FGF-2, FASEB 2001; 15: 550-552.
26. Jouan, V., Canron, X., Alemany, M., Caen, J. P., Quentin, G., Plouet, J., and Bikfalvi, A. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action, Blood 1999; 94: 984-993.
27. Sharpe, R. J., Byers, H. R., Scott, C. F., Bauer, S. I., and Maione, T. E. Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4, J National Cancer Institute 1990; 82: 848-853.
28. Maciej Wiktor, Oliver Hartley, Stephan Grzesiek. Characterization of Structure, Dynamics, and Detergent Interactions of the Anti-HIV Chemokine Variant 5P12-RANTES, Biophysical Journal 2013; 105:2586-2597.
29. W Schnitzel, U Monschein and J Besemer. Monomer-dimer equilibria of interleukin-8 and neutrophil-activating peptide 2. Evidence for IL-8 binding as a dimer and oligomer to IL-8 receptor B. Journal of Leukocyte Biology 1994; 55: 763-770.
30. Harshica Fernando, Ch(ristopher Chin, Jörg Rösgen and Krishna Rajarathnam. Dimer Dissociation Is Essential for Interleukin-8 (IL-8) Binding to CXCR1 Receptor. Biological Chemistry 2004; 279: 36175-36178.
31. .Jennifer S. Laurence, Andy C.. LiWang. And Patricia J. LiWang. Effect of N-Terminal Truncation and Solution Conditions on Chemokine Dimer Stability: Nuclear Magnetic Resonance Structural Analysis of Macrophage Inflammatory Protein 1-β Mutants. Biochemistry 1998; 37:9346-9354.
32. Andy C. LiWang, Jian Jing Cao,§ Hong Zheng, Zhaohai Lu, Stephen C. Peiper, and Patricia J. LiWang, Dynamics Study on the Anti-Human Immunodeficiency Virus Chemokine Viral Macrophage-Inflammatory Protein-II (VMIP-II) Reveals a Fully Monomeric Protein. Biochemistry 1999; 38: 442-453.
33. Krishna Rajarathnam, Yuling Li, Thomas Rohrer, and Reiner Gentz Solution Structure and Dynamics of Myeloid Progenitor Inhibitory Factor-1 (MPIF-1), A Novel Monomeric CC Chemokine. Biological Chemistry 2001; 276: 4909-4916.
34. Helen YOUNG, Vikram ROONGTA, Thomas J. DALY and Kevin H. MAYO. NMR structure and dynamics of monomeric neutrophil-activating peptide 2. Biochemical Journal 1999; 338: 591-598.
35. Olga K. Baryshnikova and Brian D. Sykes. Backbone dynamics of SDF-1a determined by NMR: Interpretation in the presence of monomer–dimer equilibrium. Protein Science 2006; 15: 2568–2578.
36. Samantha J. Allen, Susan E. Crown, and Tracy M. Handel. Chemokine: Receptor structure, interactions, and antagonism. Annual Review of Immunology 2007; 25: 787–820.
37. Morsi Abdallah, Tanja Michel, and Laszlo Kohidai. Autism Spectrum Disorders and Circulating Chemokines. Comprehensive Guide to Autism 2014; 1627-1642.
38. Tsang-Lin Hwang, Susumu Mori, A. J. Shaka, and Peter C. M. van Zijl. Application of phase-modulated CLEAN chemical exchange spectroscopy (CLEANEX-PM) to detect water-protein proton exchange and intermolecular NOEs. JACS 1997; 119: 6203-6204.
39. Geoffrey Bodenhausen, David J. Ruben. Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chemical Physics Letters 59 1980; 69: 185-189.
40. James Carlson, Sarah A. Baxter, Didier Dréau, Irina V. Nesmelova. The heterodimerization of platelet-derived chemokines. Biochinica et Biophysica Acta 2013; 1834: 148-168.