研究生: |
蔡丞洲 Tasi, Cheng-Zhou |
---|---|
論文名稱: |
應用Faster RCNN和BERT模型在租車業智慧化產品服務系統中建立個人化景點推薦系統 Apply Faster RCNN and BERT Model to Build a Personalized Attraction Recommendation Agent in A Smart Product Service System of the car rental industry |
指導教授: |
邱銘傳
Chiu, Ming-Chuan |
口試委員: |
王志軒
WANG, Zhi-Xuan 許倍源 XU, Bei-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 智慧化產品服務系統 、物件偵測 、自然語言處理 、深度學習 、推薦系統 、個人化 |
外文關鍵詞: | Smart product service system, object detection, natural language processing, deep learning, recommendation system, personalization |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著經濟發展永續議題日漸受到重視。因此,智能化產品服務系統(Smart Product Service System, SPSS)受到了廣泛的關注,通過智能和互連產品處理上下文相關的服務,以提供更貼近客戶的服務。
儘管多數研究透過數據分析模型作為智能PSS的解決方案,但使用單一模型僅能對單一數據類型進行分析,導致提供的服務無法滿足客戶需求。此外,大多數研究提出了一種通用的解決方案,而較少考慮客戶的主觀想法及缺乏與客戶雙向溝通。為了彌補研究的不足,本研究提出一方法,其中包括:(1)透過物件偵測(Object Detection)模型對圖像數據提取客戶偏好。 (2)透過自然語言處理(Natural Language Processing, NLP )方法來分析客戶回饋以優化系統。因此,本研究透過多種深度學習方法分析客戶主觀想法,以獲得更準確的個人需求,並透過分析客戶回饋,以提供更個人化的服務。
In recent years, with the development of the economy, the issue of sustainability has received increasing attention. Therefore, Smart Product Service System (SPSS) has received extensive attention to provide services closer to customers by processing contextually relevant services through smart and interconnected products.
Although most studies use data analysis models as a solution for intelligent PSS, using a single model can only analyze a single data type, resulting in services that cannot meet customer needs. In addition, most studies propose a general solution with less consideration for the subjective thinking of the customer and the lack of two-way communication with the customer. In order to make up for the lack of research, this research proposes a method, which includes: (1) Extract customer preferences from image data through an Object Detection model. (2) Analyze customer feedback through Natural Language Processing (NLP) methods to optimize the system. Therefore, this study analyzes customers' subjective thoughts through various deep learning methods to obtain more accurate personal needs, and analyzes customer feedback to provide more personalized services.
1. Aitkenhead, M. J., & McDonald, A. J. S. (2003). A neural network face recognition system. Engineering Applications of Artificial Intelligence, 16(3), 167-176.
2. Bharati, P., & Pramanik, A. (2020). Deep learning techniques—R-CNN to mask R-CNN: a survey. In Computational Intelligence in Pattern Recognition (pp. 657-668). Springer, Singapore.
3. Brooke, J. (1996). SUS: a “quick and dirty” usability scale. In P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.), Usability Evaluation in Industry. London: Taylor and Francis
4. Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3), 114-123.
5. Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., & Ouni, K. (2019, February). Car detection using unmanned aerial vehicles: Comparison between faster r-cnn and yolov3. In 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS) (pp. 1-6). IEEE.
6. Chang, D., Gu, Z., Li, F., & Jiang, R. (2019). A user-centric smart product-service system development approach: A case study on medication management for the elderly. Advanced Engineering Informatics, 42, 100979.
7. Chiu, M. C., Huang, J. H., Gupta, S., & Akman, G. (2021). Developing a personalized recommendation system in a smart product service system based on unsupervised learning model. Computers in Industry, 128, 103421.
8. Chiu, M-C., Tsai, H-Y. & Chiu, J-E.(2022). A Novel Directional Object Detection Method for Piled Objects Using a Hybrid Region-Based Convolutional Neural Network, Advanced Engineering Informatics 51, 101448
9. Cong, J. C., Chen, C. H., Zheng, P., Li, X., & Wang, Z. (2020). A holistic relook at engineering design methodologies for smart product-service systems development. Journal of Cleaner Production, 272, 122737.
10. Chiu, M.C., Chu, C.Y., & Kuo, T.C., (2019). Product service system transition method: building firm’s core competence of enterprise. Int. J. Prod. Res. 57 (20), 6452–6472.
11. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
12. Goedkoop, M. J., Van Halen, C. J., Te Riele, H. R., & Rommens, P. J. (1999). Product service systems, ecological and economic basics. Report for Dutch Ministries of environment (VROM) and economic affairs (EZ), 36(1), 1-122.
13. Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.
14. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587).
15. He, G., Chen, Q., Jiang, D., Lu, X., & Yuan, Y. (2017). A double-region learning algorithm for counting the number of pedestrians in subway surveillance videos. Engineering Applications of Artificial Intelligence, 64, 302-314.
16. Han, X., He, T., Ong, Y. S., & Zhong, Y. (2020). Precise object detection using adversarially augmented local/global feature fusion. Engineering Applications of Artificial Intelligence, 94, 103710.
17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
18. Kuo, T-C., Chiu, M-C., Huang, J-H., Chang, C-Y., Gupta, S. & Akman, G. (2021). Development of a Data-driven Smart Product Service System Framework Utilizing Unsupervised Learning Model, International Journal of Industrial Engineering: Theory, Applications, and Practice, 28(1), 130-147.
19. Lau, J. H., & Baldwin, T. (2016). An empirical evaluation of doc2vec with practical insights into document embedding generation. arXiv preprint arXiv:1607.05368.
20. Liu, Z., Ming, X., Song, W., Qiu, S., & Qu, Y. (2018). A perspective on value co-creation-oriented framework for smart product-service system. Procedia Cirp, 73, 155-160.
21. Lee, C. H., Chen, C. H., & Trappey, A. J. (2019). A structural service innovation approach for designing smart product service systems: Case study of smart beauty service. Advanced Engineering Informatics, 40, 154-167.
22. Madzarov, G., & Gjorgjevikj, D. (2009). Multi-class classification using support vector machines in decision tree architecture. In IEEE EUROCON 2009 (pp. 288-295). IEEE.
23. Massai, L., Nesi, P., & Pantaleo, G. (2019). PAVAL: A location-aware virtual personal assistant for retrieving geolocated points of interest and location-based services. Engineering Applications of Artificial Intelligence, 77, 70-85.
24. Muzamal, J. H., Tariq, Z., & Khan, U. G. (2019, August). Crowd Counting with respect to Age and Gender by using Faster R-CNN based Detection. In 2019 International Conference on Applied and Engineering Mathematics (ICAEM) (pp. 157-161). IEEE.
25. Oksuz, K., Cam, B. C., Kalkan, S., & Akbas, E. (2020). Imbalance problems in object detection: A review. IEEE transactions on pattern analysis and machine intelligence, 43(10), 3388-3415.
26. Porter, M. E., & Heppelmann, J. E. (2015). How smart, connected products are transforming companies. Harvard business review, 93(10), 96-114.
27. Redlich, T., Krenz, P., Basmer, S.-V., Buxbaum-Conradi, S., Wulf, S., & Wulfsberg, J. P. (2014). The Impact of Openness on Value Co-creation in Production Networks. Procedia CIRP, 16, 44–49.
28. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 91-99.
29. Ramos, J. (2003, December). Using tf-idf to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, No. 1, pp. 29-48).
30. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).
31. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788).
32. Rijsdijk, S. A., & Hultink, E. J. (2009). How today’s consumers perceive tomorrow’s smart products. Journal of Product Innovation Management, 26(1), 24-42.
33. Sultana, F., Sufian, A., & Dutta, P. (2020). A review of object detection models based on convolutional neural network. Intelligent computing: image processing based applications, 1-16.
34. Song, W., Niu, Z., & Zheng, P. (2021). Design concept evaluation of smart product-service systems considering sustainability: An integrated method. Computers & Industrial Engineering, 159, 107485.
35. Tukker, A., & Tischner, U. (2006). Product-services as a research field: past, present and future. Reflections from a decade of research. Journal of cleaner production, 14(17), 1552-1556.
36. Tseng, M. L., Bui, T. D., Lan, S., Lim, M. K., & Mashud, A. H. M. (2021). Smart product service system hierarchical model in banking industry under uncertainties. International Journal of Production Economics, 240, 108244.
37. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018.
38. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
39. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep learning for computer vision: A brief review. Computational intelligence and neuroscience, 2018.
40. Valencia, A., Mugge, R., Schoormans, J., & Schifferstein, H. (2015). The design of smart product-service systems (PSSs): An exploration of design characteristics. International Journal of Design, 9(1).
41. Wang, W., Zhao, S., Shen, J., Hoi, S. C., & Borji, A. (2019). Salient object detection with pyramid attention and salient edges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1448-1457).
42. Wang, Z., Chen, C. H., Zheng, P., Li, X., & Khoo, L. P. (2019). A novel data-driven graph-based requirement elicitation framework in the smart product-service system context. Advanced engineering informatics, 42, 100983.
43. Wang, Z., Chen, C. H., Zheng, P., Li, X., & Khoo, L. P. (2021). A graph-based context-aware requirement elicitation approach in smart product-service systems. International Journal of Production Research, 59(2), 635-651.
44. Yang, X., Yan, J., & He, T. (2020). On the arbitrary-oriented object detection: Classification based approaches revisited. arXiv preprint arXiv:2003.05597.
45. Zheng, P., Wang, Z., Chen, C. H., & Khoo, L. P. (2019). A survey of smart product-service systems: Key aspects, challenges and future perspectives. Advanced engineering informatics, 42, 100973.
46. Zheng, P., Lin, T. J., Chen, C. H., & Xu, X. (2018). A systematic design approach for service innovation of smart product-service systems. Journal of cleaner production, 201, 657-667.
47. Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.