簡易檢索 / 詳目顯示

研究生: 李詩婷
Lee, Shi-Ting
論文名稱: 強雜質在二維蜂窩晶格上對拓樸態的效應
Effects Of Strong Impurities On Topological States in 2D Honeycomb Lattice
指導教授: 牟中瑜
Mou, Chung-Yu
口試委員: 陳柏中
Chen, Pochung
張明哲
Chang, M.C.
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 52
中文關鍵詞: 拓樸絕緣體邊緣態雜質
外文關鍵詞: topological insulator, edge state, impurity
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The existence of mid-gap edge states is a distinct feature of topological electronic states. However, in the presence of vacancies, impurity band also arises inside the gap. The degeneracy of the impurity band with the edge states thus calls for an examination of the stability of topological states
    in the presence of the impurity band.
    In this thesis, we examine the stability of topological electronic states in honeycomb lattice due to the presence of the impurity band. We shall first investigate the topological indices and their evaluations based on the computation of the Chern number and the spin Chern number. A simple picture will be presented and demonstrates how Z2 topological index arises. Useful numerical algorithms that were developed from lattice gauge theory will be presented to calculate the Chern number and the spin Chern number of a given system that doesn't have translation invariant in real space and time-reversal symmetry.
    Using the developed numerical methods, we analyze effects on the topological indices due to vacancies in the 2D Kane-Mele model and its extensions that
    are applicable to new developed materials such as silicene and germanene.
    A consistent check of the presence of edge states is also performed by computing the spectral function A(k,w) and local density of states.
    It is shown that in consistency with our simple picture, changing of the spin Chern number from non-trivial to trivial values is accompanied by the destruction of Dirac cones. When Dirac cones are destroyed, topological insulators are turned into trivial insulators. The transition occurs in a first-order transition fashion at vacancy concentration being around 7 % when vacancies reside only on one sublattice. While if vacancies reside in both sublattices, Dirac cones are destroyed in a continuous fashion so that the transition is continuous. These results are useful for characterizing topological insulators.


    1 Introduction 1 2 Theoretical models, topological invariants and their evaluation 5 2.1 Tight-Binding models on honeycomb lattice . . . . . . . . . . . . . . . . . . 5 2.2 Berry phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Chern number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Relation between Berry connection, Berry curvature,and Chern number 12 2.3.2 Edge state and Chern number . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3 Relation between time-reversal symmetry and Chern number . . . . . 14 2.4 Time reversal invariance and Z2 topological order: a simple picture . . . . . 15 2.5 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 Direct Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Numerics based on lattice gauge . . . . . . . . . . . . . . . . . . . . 20 2.5.3 Lattice gauge formulation for Z2 computation . . . . . . . . . . . . . 24 3 Results and discussion 25 3.1 General Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Stability of Z2 topological orders in the presence of impurity band . . . . . . 33 3.3 Half hydrogenated Silicene and Germanene . . . . . . . . . . . . . . . . . . . 42 4 Summary and Conclusion 48

    [1] von Klitzing, K., G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494, 1980.
    [2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49,
    405, 1982.
    [3] S. Murakami, N. Nagaosa, and S. C. Zhang, Science 301,1348, 2003; Phys. Rev. Lett.
    93, 156804, 2004; J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
    H. MacDonald, Phys. Rev. Lett. 92, 126603, 2004.
    [4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005); B. A. Bernevig, T. L.
    Hughes, and S. C. Zhang, Science 314,1757, 2006.
    [5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005);
    [6] D. N. Sheng, Z.Y. Weng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 97, 036808
    (2006); Phys. Rev. Lett., 107, 066602, (2011); T. Fukui and Y.Hatsugai, Phys. Rev. B
    75, 121403R, 2007.
    [7] Liang Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Rev. 98, 106803 (2007).
    [8] Fu, L., and C. L. Kane, Phys. Rev. B 76, 045302, (2007); Xia, Y., et al., Nature Phys.
    5, 398, 2009; H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Nature
    Phys. 5, 438, 2009.
    [9] R. Roy, Phys. Rev. B 79, 195322, 2009.
    [10] J. Li, Rui-Lin Chu, J. K. Jain, and Shun-Qing Shen, Phys. Rev. Lett. 102, 136806,
    2009.
    [11] C. W. Groth, M. Wimmer, A. R. Akhmerov, J. Tworzydlo, and C. W. J. Beenakker,
    Phys. Rev. Lett. 103, 196805, (2009).
    [12] G. Schubert, H. Fehske, L. Fritz, and M. Vojta, Phys. Rev. B 85, 201105(R), (2012).
    [13] Y. S. Hor et al., Phys. Rev. B79, 195208 (2009).P. Cheng et al., Phys. Rev. Lett.105,
    076801 (2010).
    [14] Bor-Luen Huang and Chung-Yu Mou, Eur. Phys. Lett. 88, 68005, (2009); Bor-Luen
    Huang, Ming-Che Chang, and Chung-Yu Mou, Phys. Rev. B 82, 155462 (2010).
    [15] Takahiro Fukui, Yasuhiro Hatsugai and Hiroshi Suzuki J. Phys. Soc. Jpn. 74 (2005) pp.
    1674-1677
    [16] Andrew M. Essin and J. E. Moore, Phys. Rev. B 76, 165307 (2007)
    [17] Tsung-Wei Chen , Zhi-Ren Xiao, Dah-Wei Chiou, and Guang-Yu Guo ,Phys. Rev. B
    84, 165453 (2011)
    [18] Takahiro Fukui, Yasuhiro Hatsugai ,Phys. Rev. B 75, 121403(R) (2007)
    [19] D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 97, 036808
    (2006)
    [20] Y. Yang, Z. Xu, L. Sheng, B. Wang, D.Y. Xing, and D. N. Sheng, Phys. Rev. Lett. 107,
    066602 (2011)
    [21] Rahul Roy , Phys. Rev. B 79, 195321 (2009)
    [22] Emil Prodan, Phys. Rev. B 80, 125327 (2009)
    [23] Gerald Schubert2, Holger Fehske, Lars Fritz, and Matthias Vojta , Phys. Rev. B 85,
    201105(R) (2012)
    [24] Conan Weeks , Jun Hu , Jason Alicea , Marcel Franz , and Ruqian Wu , Phys. Rev. X
    1, 021001 (2011)
    [25] Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil
    Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le
    Lay , Phys. Rev. Lett. 108, 155501(2012)
    [26] Patrick Vogt, Paola De Padova, Claudio Quaresima, Jose Avila, Emmanouil
    Frantzeskakis, Maria Carmen Asensio, Andrea Resta, Bénédicte Ealet, and Guy Le
    Lay , Phys. Rev. Lett. 108, 155501(2012)
    [27] Motohiko Ezawa , Phys. Rev. Lett. 109, 055502 (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE