簡易檢索 / 詳目顯示

研究生: 陳彥霖
yen-lin chen
論文名稱: 應用於軟骨組織工程的醣胺素/幾丁聚醣材料開發及其調控ECM產生及基因表現機制探討
指導教授: 胡育誠
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 121
中文關鍵詞: 醣胺素幾丁聚醣細胞支架組織工程基因晶片
外文關鍵詞: glycosaminoglycans, chitosan,, tissue engineering, microarray, scaffold
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 組織工程研究中多孔性細胞支架是常用的細胞載體,而醣胺素及幾丁聚醣材料被認為是極具開發潛力的支架材料。本研究的主旨在利用實驗設計法設計供軟骨組織工程使用的醣胺素/幾丁聚醣(chitosan)生物模擬材料,並探討醣胺素(glycosaminoglycan; GAGs)對軟骨細胞增生、細胞外間質(extracellular matrix; ECM)產生及相關基因表現的影響,以進一步了解醣胺素調節軟骨細胞生理行為的作用機制。軟骨細胞於體外增生3代後即容易去分化,因此本研究首先利用部份因子實驗設計法評估醣胺素/幾丁聚醣薄膜中chondroitin-4-sulfate (CSA), chondroitin-6-sulfate (CSC), dermatan sulfate (DS)及heparin 等醣胺素對軟骨細胞分化、增生及ECM產生之影響,並探討何種醣胺素組成有利於體外培養軟骨細胞。結果顯示在實驗的劑量範圍,低劑量CSA (code -1、實際添加量2.6 mg)有利於軟骨細胞分泌膠原蛋白但不利細胞增生;高劑量CSC (code +1、實際添加量1.3 mg)有利於GAGs合成且不利細胞增生;高劑量DS (code +1、實際添加量0.13 mg)及heparin (code +1、實際添加量0.33 mg)有利於軟骨細胞增生但不利軟骨細胞產生膠原蛋白及GAGs產生。此外,不同種類的醣胺素間的交互作用亦是影響軟骨細胞的生理行為的原因之一。在8組醣胺素/幾丁聚醣薄膜中,含低劑量CSA、heparin(code -1、實際添加量0.033 mg)的N1及N4組醣胺素配方由於有利於維持軟骨細胞的形態、膠原蛋白及GAGs產生及可刺激軟骨細胞特殊標的基因的表現,因此顯示最具有應用於體外培養軟骨細胞的潛力。
    第二階段的研究將使用的醣胺素種類由原本的4種減少為2種(CSC、DS),希望藉由回應曲面實驗設計法的幫助,設計最適化的CSC/DS幾丁聚醣支架,並探討CSC及DS對軟骨組織再生的影響。結果顯示CSC/DS的組成並不會影響細胞支架的孔隙度及孔徑等物理性質及細胞貼附,但會影響軟骨細胞的形態、膠原蛋白及GAGs產生量及軟骨細胞的基因表現。此外,回應曲面分析顯示高劑量CSC及低劑量DS有利於膠原蛋白及GAGs產生,且最適合軟骨組織再生的CSC/DS/幾丁聚醣細胞支架其CSC、DS含量分別為2.8 mg及0.01 mg。另外,本研究亦證實在最適化CSC/DS組成中添加微量DS對軟骨組織再生有其必要性。最重要的是,本研究發現同時添加CSC/DS於幾丁聚醣細胞支架具刺激BMP2、TGF-β1、Ihh、PTHrP、Sox 9、aggrecan、collagen II、TIMP3及MMP13基因表現的效果、但卻抑制decorin及BMP4基因的表現。因此CSC/DS可能藉由調控BMP2、TGF-β1表現,影響BMP、TGF-β及Hedgehog等訊息傳遞路徑,進而影響ECM含量及相關基因表現。


    Generally, scaffold is used as cell carrier for tissue engineering. Co-conjugating CSC/DS to chitosan is a potential scaffold material for cartilage tissue engineering. The aim of this study is to co-conjugate multiple glycosaminoglycans (GAGs) to 2D chitosan membranes and 3D porous chitosan scaffolds, hoping to more intimately mimic the natural extracellular matrix (ECM) for culturing chondrocyte in vitro and cartilage tissue engineering and further investigating the roles of GAGs in regulating ECM production and related gene expression. The chondroitin-4-sulfate (CSA), chondroitin-6-sulfate (CSC), dermatan sulfate (DS), and heparin were co-immobilized to chitosan membranes for maintaining the differentiation of monolayer chondrocytes culture and improving the ECM production in vitro. With the aid of 4-factor, 2-level 24-1 fractional factorial design, we formulated 8 GAG/chitosan compositions (groups N1-N8) which were found to profoundly influence chondrocyte behavior. Within the level range between -1 and +1, low levels of CSA (code -1; 2.6 mg), was desired for collagen production but undesired for cell proliferation. High level CSC (code +1; 1.3 mg) was favorable for GAG production but not for cell proliferation. Conversely high level DS (code +1; 0.13 mg) and heparin (code +1; 0.33 mg) were desired for cell proliferation but undesired for GAG and collagen production. Additionally, the interactions between GAG species affected collagen and GAG production too. Among the 8 GAGs/chitosan membranes, the ones with low CSA and heparin levels (N1 and N4) led to proper chondrocyte phenotype, as judged by chondrocyte-like morphology, modest cell expansion, higher GAG and collagen production and proper cartilage marker gene expression. This result indicates the potential of N1 and N4 GAGs formulation for culturing chondrocyte in vitro.
    Since simultaneous quantification of 4 different GAGs in the 3D scaffolds is technically difficult, the number of GAG species was reduced to 2 (CSC and DS) to simplify the experimental design. To optimize the CSC/DS formulation and investigate the roles of CSC and DS in cartilage formation, Response Surface Methodology (RSM) was employed to design CSC/DS/chitosan scaffolds of various formulations. Conjugating CSC or DS did not affect the physical properties of scaffolds, cell adhesion and proliferation, but impacted collagen and GAGs production. Within the experimental range, the GAGs and collagen production were found to positively correlate with amount of CSC on scaffold, but were negatively correlated with that of DS. According to the analysis by RSM, co-conjugating CSC 2.8 mg/scaffold and DS 10 μg/scaffold to chitosan scaffold is optimal formulation for cartilage tissue engineering. Further result illustrates that the minor DS on the CSC/DS/chitosan scaffolds was needed for improving the collagen and GAGs production. Moreover, the optimal formulation of CSC/DS/chitosan scaffolds up-regulated the gene expression of BMP2、TGF-β1、Ihh、PTHrP、Sox9、aggrecan、collagen II、TIMP3 and MMP13, but down-regulated the decorin and BMP4 expression. These results indicate the co-conjugating CSC/DS to chitosan scaffold modulated ECM production and related gene expression in vitro by regulating the BMP、TGF-β and Hedgehog signaling transduction pathway.

    摘要 I Abstract III 目錄 V 第一章 序論 1 第二章 文獻回顧 4 2-1 軟骨組織的損傷 4 2-2 組織工程 6 2-3 應用於組織工程的天然高分子材料 8 2-4 生物模擬材料的開發及設計 11 2-5 細胞的訊息傳遞與ECM合成的調控 14 第三章 材料與方法 25 3-1 使用材料 25 3-2 實驗設計及分析 25 3-3 醣胺素/幾丁聚醣材料的製備方法 27 3-4 材料性質的評估 28 3-5 軟骨細胞的分離 30 3-6 薄膜材料的生物性質分析 30 3-7 細胞支架的生物性質分析 33 3-8 最適化CSC/DS/chitosan細胞支架對軟骨細胞ECM含量及相關基因表現的影響 36 第四章 結果與討論(1)-醣胺素/幾丁聚醣薄膜 46 4-1 醣胺素幾丁聚醣薄膜(GAGs/Chitosan membrane)的製備 46 4-2 因子實驗設計法設計醣胺素組成. 48 4-3 討論 …………………………………………………………..……………55 第五章 結果與討論(2)- CSC/DS/Chitosan細胞支架 66 5-1 CSC/DS/chitosan 細胞支架的物理性質 67 5-2 CSC/DS/chitosan 細胞支架的生物性質 68 5-3 討論 ……………………………………………………………………..71 第六章 結果與討論(3)-軟骨細胞基因表現及相關訊號傳遞路徑的變化 87 6-1 培養時間對CSC/DS刺激軟骨細胞增生及ECM產生的影響 88 6-2 CSC/DS對軟骨細胞ECM相關基因表現的影響 89 6-3 CSC/DS調控軟骨細胞的訊息傳遞路徑 91 6-4 CSC/DS對Hedgehog路徑相關訊息傳遞分子的影響 92 6-5 討論 ……………………………………………………………………..92 第七章 結論及未來展望 105 7-1 結論….............................................................................................................105 7-2 未來展望… 108 參考文獻. 111 表目錄 表3-1、製備醣胺素/幾丁聚醣薄膜時所使用的各種醣胺素的高低劑量 41 表3-2、8組醣胺素/幾丁聚醣薄膜的組成配方 42 表3-3、CSC/DS/幾丁聚醣細胞支架的組成 43 表3-4、RT-PCR分析所使用的核酸引子的序列 44 表3-5、定量RT-PCR分析所使用的核酸引子的序列 45 表4-1、CSA、CSC、DS及heparin對軟骨細胞增生、醣胺素及膠原蛋白產量的廻歸方程式的係數 58 表5-1、細胞支架的孔徑(pore size)及孔隙度(porosity) 74 表5-2、細胞支架上的CSC/DS 的質量比(mass ratio) 75 表5-3、CSC及DS對軟骨細胞醣胺素及膠原蛋白產量的廻歸方程式係數 76 表6-1、基因晶片分析顯示受CSC/DS影響的訊息傳遞分子 98 圖目錄 圖2-1、醣胺素CSA、CSC 、DS、heparin的單體結構 18 圖2-2、 細胞周圍的環境對軟骨細胞基因表現的影響 19 圖2-3、骨髓間質幹細胞分化為軟骨及成骨細胞的相關訊息分子的活動 20 圖2-4、軟骨細胞分化各步驟所涉及的生長因子、分化因子、轉錄因子 21 圖2-5、關節及軟骨細胞中的TGF-β 訊息傳遞路徑 22 圖2-6、BMP訊息傳遞路徑 23 圖2-7、受機械壓力控制的基因所涉及的訊息傳遞路徑 24 圖4-1、CSA添加量對修飾到幾丁聚醣薄膜表面的CSA含量的影響(a)及對軟骨細胞貼附的影響(b) 59 圖4-2、CSA、CSC、DS及heparin的組成對修飾到薄膜表面的醣胺素含量(a)及對交聯至薄膜的醣胺素的釋放(b)的影響 60 圖4-3、CSA、CSC、DS及heparin的組成對細胞形態的影響。 61 圖4-4、CSA、CSC、DS及heparin的組成對細胞增生倍率的影響。 62 圖4-5、CSA、CSC、DS及heparin的組成對軟骨細胞培養14天後產生膠原蛋白(a)及醣胺素(b)的影響 63 圖4-6軟骨細胞培養於N1、N4、N5等實驗組及對照組(PS)14天後的基因表現(a)及基因表現的程度(b。 64 圖4-7 、CSA、CSC、DS及heparin對膠原蛋白及醣胺素產量的交互影響 65 圖5-1、CSC/DS/chitosan (N1-N9)及chitosan(C )細胞支架SEM 照片 76 圖5-2、醣胺素添加量對交聯率的影響(a)、CSC及DS分解液中的ΔDi-6S 及 ΔDi-4S的HPLC 層析圖譜(b)及製備N1實驗組的支架時的清洗廢液中的ΔDi-6S and ΔDi-4S層析圖譜(c) 77 圖5-3、CSC/DS/幾丁聚醣架(N1-N9)的醣胺素釋放速率隨時間的變化 78 圖5-4、CSC/DS組成對軟骨細胞貼附(a)及增生(b)的影響 79 圖5-5、軟骨細胞於支架培養21天後的組織切片的H&E染色 80 圖5-6、CSC/DS組成對 GAGs (a) and collagen (b)產生量的影響 81 圖5-7、軟骨細胞於支架培養21天後的組織切片的Masson’s trichrome染色 82 圖5-8、培養於不同支架的軟骨細胞的基因表現 83 圖5-9、藉回應曲面預測最適化CSC/DS組成 84 圖5-10、最適化CSC/DS組成的醣胺素及膠原蛋白產量的預測值與實驗值及將最適化CSC/DS組成中的DS移除後的醣胺素及膠原蛋白產量 85 圖6-1、軟骨細胞培養於CSC/DS/chitosan及chitosan支架後細胞增生倍率(a)、醣胺素產生量(b)及膠原蛋白產生量(c)隨培養時間的變化。 99 圖6-2、軟骨細胞培養於CSC/DS/chitosan及chitosan支架後,15種ECM相關基因的表現 100 圖6-3、軟骨細胞培養於CSC/DS/chitosan及chitosan支架10天後collagen II, aggrecan, decorin, TIMP3 and MMP13 等基因的表現量 101 圖6-4 、cDNA基因晶片分析圖 102 圖6-5軟骨細胞培養於CSC/DS/chitosan及chitosan支架10天後TGF-β1、Sox9、BM2、BMP4、PTHrP及Ihh等基因的表現量 103 圖6-6、CSC/DS調控軟骨細胞生長因子、訊息傳遞分子及ECM相關基因表現的可能機制 104

    參考文獻
    1. Minas T. The role of cartilage repair techniques, including chondrocyte transplantation, in focal chondral knee damage. Instr Course Lect 1999;48: 629-643.
    2. Coutts RD, Healey RM, Ostrander R, Sah RL, Goomer R, Amiel D. Matrices for cartilage repair. Clin Orthop Relat Res 2001;391:S271-279.
    3. Glowacki J. In vitro engineering of cartilage. J Rehabil Res Dev 2000; 37: 171-177.
    4. Girotto D, Urbani S, Brun P, Renier D, Barbucci R, Abatangelo G. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 2003;24:3265-3275.
    5. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000;21: 2589-2598.
    6. Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol 2005 ;12:267-277.
    7. Sechriest VF, Miao YJ, Niyibizi C, Westerhausen-Larson A, Matthew HW, Evans CH, et al. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Materi Res 2000;49:534-541.
    8. Brandt JD. The unraveling of a joint venture. Coll Rev 1993 ;10:78-83.
    9. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998;47:477-486.
    10. Sandell LJ, Aigner T. Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 2001;3:107-113.
    11. Bock HC, Michaeli P, Bode C, Schultz W, Kresse H, Herken R, et al. The small proteoglycans decorin and biglycan in human articular cartilage of late-stage osteoarthritis. Osteoarthritis Research 2001;9:654-663.
    12. Buckwalter JA, Roughley PJ, Rosenberg LC. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech 1994;28:398-408.
    13. Reginster JY, Bruyere O, Neuprez A. Current role of glucosamine in the treatment of osteoarthritis. Rheumatology 2007 ;46:731-735.
    14. da Camara CC, Dowless GV. Glucosamine sulfate for osteoarthritis. Ann pharmacother 1998;32:580-587.
    15. Stitik TP, Blacksin MF, Stiskal DM, Kim JH, Foye PM, Schoenherr L, et al. Efficacy and safety of hyaluronan treatment in combination therapy with home exercise for knee osteoarthritis pain. Arch Phys Med Rehabil 2007;88:135-141.
    16. Turan Y, Bal S, Gurgan A, Topac H, Koseoglu M. Serum hyaluronan levels in patients with knee osteoarthritis. Clin Rheumatol 2007;Jan 5.
    17. Kobayashi K, Amiel M, Harwood FL, Healey RM, Sonoda M, Moriya H, et al. The long-term effects of hyaluronan during development of osteoarthritis following partial meniscectomy in a rabbit model. Osteoarthritis Cartilage 2000; 8:359-365.
    18. Brandt KD, Smith GN, Jr., Simon LS. Intraarticular injection of hyaluronan as treatment for knee osteoarthritis: what is the evidence? Arthritis Rheum 2000; 43:1192-1203.
    19. Ho ML, Chang JK, Chuang LY, Hsu HK, Wang GJ. Characteristics of primary osteoblast culture derived from rat fetal calvaria. Kaohsiung J Med Sci 1999;15:248-255.
    20. Bell E. Tissue engineering: a perspective. J Cell Biochem 1991;45:239-241.
    21. Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 2000;21:431-440.
    22. Mauck RL, Wang CC, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 2003;11:879-890.
    23. Brodkin KR, Garcia AJ, Levenston ME. Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials 2004;25:5929-5938.
    24. Iwasaki N, Yamane ST, Majima T, Kasahara Y, Minami A, Harada K, et al. Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 2004;5:828-833.
    25. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 2001;7:679-689.
    26. Lee JE, Kim KE, Kwon IC, Ahn HJ, Lee SH, Cho H, et al. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold. Biomaterials 2004;25:4163-4173.
    27. Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum 2000;43:1156-1164.
    28. Goomer RS, Maris TM, Gelberman R, Boyer M, Silva M, Amiel D. Nonviral in vivo gene therapy for tissue engineering of articular cartilage and tendon repair. Clin Orthop Relat Res 2000;379:S189-200.
    29. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res 2005;23:425-432.
    30. Schwartz DE, Choi Y, Sandell LJ, Hanson WR. Quantitative analysis of collagen, protein and DNA in fixed, paraffin-embedded and sectioned tissue. Histochem J 1985;17:655-663.
    31. Komsa-Penkova R, Spirova R, Bechev B. Modification of Lowry's method for collagen concentration measurement. J Biochem Biophys Methods 1996;32: 33-43.
    32. Bittner K, Liszio C, Blumberg P, Schonherr E, Kresse H. Modulation of collagen gel contraction by decorin. Biochemical J 1996;314:159-166.
    33. Knudson CB, Knudson W. Cartilage proteoglycans. Semin Cell Dev Biol 2001; 12:69-78.
    34. Schuman L, Buma P, Versleyen D, de Man B, van der Kraan PM, van den Berg WB, et al. Chondrocyte behaviour within different types of collagen gel in vitro. Biomaterials 1995;16:809-814.
    35. van der Kraan PM, Buma P, van Kuppevelt T, van den Berg WB. Interaction of chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthritis Cartilage 2002;10:631-637.
    36. Ueno H, Nakamura F, Murakami M, Okumura M, Kadosawa T, Fujinag T. Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials 2001;22:2125-2130.
    37. Nieduszynski IA, Huckerby TN, Dickenson JM, Brown GM, Tai GH, Morris HG, et al. There are two major types of skeletal keratan sulphates. Biochem J 1990;271:243-245.
    38. Hickery MS, Bayliss MT, Dudhia J, Lewthwaite JC, Edwards JC, Pitsillides AA. Age-related changes in the response of human articular cartilage to IL-1alpha and transforming growth factor-beta (TGF-beta): chondrocytes exhibit a diminished sensitivity to TGF-beta. J Biol Chem 2003;278:53063-53071.
    39. Mourao PA. Distribution of chondroitin 4-sulfate and chondroitin 6-sulfate in human articular and growth cartilage. Arthritis Rheum 1988;31:1028-1033.
    40. Sugahara K, Mikami T, Uyama T, Mizuguchi S, Nomura K, Kitagawa H. Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 2003;13:612-620.
    41. Chintala SK, Miller RR, McDevitt CA. Basic fibroblast growth factor binds to heparan sulfate in the extracellular matrix of rat growth plate chondrocytes. Arch Biochem Biophys 1994;310:180-186.
    42. Madihally SV, Flake AW, Matthew HW. Maintenance of CD34 expression during proliferation of CD34+ cord blood cells on glycosaminoglycan surfaces. Stem Cells 1999;17:295-305.
    43. Chupa JM, Foster AM, Sumner SR, Madihally SV, Matthew HW. Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 2000;21:2315-2322.
    44. Penc SF, Pomahac B, Winkler T, Dorschner RA, Eriksson E, Herndon M, et al. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function. J Biol Chem 1998;273:28116-28121.
    45. Kinsella MG, Bressler SL, Wight TN. The regulated synthesis of versican, decorin, and biglycan: extracellular matrix proteoglycans that influence cellular phenotype. Crit Rev Eukaryot Gene Expr 2004;14:203-234.
    46. Tawada A, Masa T, Oonuki Y, Watanabe A, Matsuzaki Y, Asari A. Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers. Glycobiology 2002;12:421-426.
    47. van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van Der Kraan PM, et al. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials 2001; 22:2359-2369.
    48. Denuziere A, Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials 1998;19:1275-1285.
    49. Liong MT, Shah NP. Optimization of cholesterol removal by probiotics in the presence of prebiotics by using a response surface method. Appl Environ Microbiol 2005;71:1745-1753.
    50. Weuster-Botz D. Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng 2000;90:473-483.
    51. Huang YB, Tsai YH, Yang WC, Chang JS, Wu PC. Optimization of sustained-release propranolol dosage form using factorial design and response surface methodology. Biol Pharm Bull 2004;27:1626-1629.
    52. Huang YY, Wu SM, Wang CY. Response surface method: a novel strategy to optimize iontophoretic transdermal delivery of thyrotropin-releasing hormone. Pharm Res 1996;13:547-552.
    53. Montgomery DC. Design and analysis of experiments. New York: Wiley, 1997.
    54. Hering TM. Regulation of chondrocyte gene expression. Front Biosci 1999; 4:D743-761.
    55. Takigawa M, Kinoshita A, Enomoto M, Asada A, Suzuki F. Effects of various growth and differentiation factors on expression of parathyroid hormone receptors on rabbit costal chondrocytes in culture. Endocrinology 1991; 129:868-876.
    56. de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001;13: 721-727.
    57. Hanada K, Solchaga LA, Caplan AI, Hering TM, Goldberg VM, Yoo JU, et al. BMP-2 induction and TGF-beta 1 modulation of rat periosteal cell chondrogenesis. J Cell Biochem 2001;81:284-294.
    58. Grimaud E, Heymann D, Redini F. Recent advances in TGF-beta effects on chondrocyte metabolism. Potential therapeutic roles of TGF-beta in cartilage disorders. Cytokine Growth Factor Rev 2002;13:241-257.
    59. Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003;422:625-629.
    60. Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem 2004;93:93-103.
    61. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem 2006;97:33-44.
    62. Li J, Yoon ST, Hutton WC. Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech 2004;17:423-428.
    63. Grunder T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, et al. Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthritis Cartilage 2004;12:559-567.
    64. Healy C, Uwanogho D, Sharpe PT. Regulation and role of Sox9 in cartilage formation. Dev Dyn 1999;215:69-78.
    65. Sekiya I, Larson BL, Vuoristo JT, Reger RL, Prockop DJ. Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma. Cell Tissue Res 2005;320:269-276.
    66. Seki K, Hata A. Indian hedgehog gene is a target of the bone morphogenetic protein signaling pathway. J Cell Biochem 2004;279:18544-18549.
    67. Long F, Zhang XM, Karp S, Yang Y, McMahon AP. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 2001;128:5099-5108.
    68. Minina E, Wenzel HM, Kreschel C, Karp S, Gaffield W, McMahon AP, et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 2001;128:4523-4534.
    69. Huang W, Chung UI, Kronenberg HM, de Crombrugghe B. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone- related peptide in the growth plate of endochondral bones. Proc Natl Acad Sci USA 2001;98:160-165.
    70. Furumatsu T, Tsuda M, Taniguchi N, Tajima Y, Asahara H. Smad3 induces chondrogenesis through the activation of SOX9 via CREB-binding protein/p300 recruitment. J Cell Biochem 2005;280:8343-8350.
    71. Zhao Q, Eberspaecher H, Lefebvre V, De Crombrugghe B. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 1997;209: 377-386.
    72. Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Cell Biochem 2000;275: 10738-10744.
    73. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 2002;16:2813-2828.
    74. Sarasa-Renedo A, Chiquet M. Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports 2005;15:223-230.
    75. Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998;9:49-61.
    76. Enobakhare BO, Bader DL, Lee DA. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethyl- methylene blue. Anal Biochem 1996;243:189-191.
    77. Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, et al. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 2004;25:129-138.
    78. Zhang R, Ma PX. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 1999;44:446-455.
    79. Rodrigues ED, Pimentel ER, Mourao PA, Gomes L. Distribution of small proteoglycans and glycosaminoglycans in humerus-related articular cartilage of chickens. Braz J Med Biol Res 2005;38:381-390.
    80. Tang M, Mao JJ. Matrix and gene expression in the rat cranial base growth plate. Cell Tissue Res 2006;324:467-474.
    81. Deschner J, Rath-Deschner B, Agarwal S. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage 2006;14:264-272.
    82. Kim TK, Park JS, Lee MC, Seong SC, Kim HJ. Alternative splicing of type II procollagen gene in the dedifferentiation of rat epiphyseal chondrocytes serially cultured in monolayer. Connect Tissue Res 2002;43:56-62.
    83. Chen YL, Chen HC, Lee HP, Chan HY, Hu YC. Rational development of GAG-augmented chitosan membranes by fractional factorial design methodology. Biomaterials 2006;27:2222-2232.
    84. Asselin A, Hattar S, Oboeuf M, Greenspan D, Berdal A, Sautier JM. The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses. Biomaterials 2004;25:5621-5630.
    85. Turner KJ, McIntyre BS, Phillips SL, Barlow NJ, Bowman CJ, Foster PM. Altered gene expression during rat Wolffian duct development in response to in utero exposure to the antiandrogen linuron. Toxicol Sci 2003;74:114-128.
    86. Bone Workshops, Davos 2004. Abstracts from the Workshop: Frontiers of Skeletal Biology and Workshop: What is New in Bisphosphonates? Bone 2004;34:S1-108.
    87. Song SJ, Hutmacher D, Nurcombe V, Cool SM. Temporal expression of proteoglycans in the rat limb during bone healing. Gene 2006;379:92-100.
    88. Patsenker E, Popov Y, Wiesner M, Goodman SL, Schuppan D. Pharmacological inhibition of the vitronectin receptor abrogates PDGF-BB-induced hepatic stellate cell migration and activation in vitro. J Hepatol 2007;46:878-887.
    89. Chen HC, Lee HP, Ho YC, Sung ML, Hu YC. Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Biomaterials 2006;27:3154-3162.
    90. Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000;21:581-593.
    91. Kolettas E, Muir HI, Barrett JC, Hardingham TE. Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology 2001; 40:1146-1156.
    92. Mouw JK, Case ND, Guldberg RE, Plaas AH, Levenston ME. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthritis Cartilage 2005;13:828-836.
    93. Adams ME, Matyas JR, Huang D, Dourado GS. Expression of proteoglycans and collagen in the hypertrophic phase of experimental osteoarthritis. J Rheumatol Suppl 1995;43:94-97.
    94. Trowbridge JM, Gallo RL. Dermatan sulfate: new functions from an old glycosaminoglycan. Glycobiology 2002;12:117R-125R.
    95. Inoue H, Kato Y, Iwamoto M, Hiraki Y, Sakuda M, Suzuki F. Stimulation of cartilage-matrix proteoglycan synthesis by morphologically transformed chondrocytes grown in the presence of fibroblast growth factor and transforming growth factor-beta. J Cell Physiol 1989;138:329-337.
    96. Holland TA, Mikos AG. Advances in drug delivery for articular cartilage. J Control Release 2003;86:1-14.
    97. Volpi N, Petrini M, Conte A, Valentini P, Venturelli T, Bolognani L, et al. Effects of glycosaminoglycans on U-937 leukemia cell proliferation and differentiation: structure-function relationship. Exp Cell Res 1994;215:119-130.
    98. Taylor KR, Rudisill JA, Gallo RL. Structural and sequence motifs in dermatan sulfate for promoting fibroblast growth factor-2 (FGF-2) and FGF-7 activity. J Biol Chem 2005;280:5300-5306.
    99. Isnard N, Robert L, Renard G. Effect of sulfated GAGs on the expression and activation of MMP-2 and MMP-9 in corneal and dermal explant cultures. Cell Biol Int 2003;27:779-784.
    100. Park YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J Control Release 2000;67:385-394.
    101. Tapp H, Hernandez DJ, Neame PJ, Koob TJ. Pleiotrophin inhibits chondrocyte proliferation and stimulates proteoglycan synthesis in mature bovine cartilage. Matrix Biol 1999;18:543-556.
    102. San Antonio JD, Winston BM, Tuan RS. Regulation of chondrogenesis by heparan sulfate and structurally related glycosaminoglycans. Dev Biol 1987; 123:17-24.
    103. Arai T, Parker A, Busby W, Jr., Clemmons DR. Heparin, heparan sulfate, and dermatan sulfate regulate formation of the insulin-like growth factor-I and insulin-like growth factor-binding protein complexes. J Biol Chem 1994;269: 20388-20393.
    104. Penc SF, Pomahac B, Eriksson E, Detmar M, Gallo RL. Dermatan sulfate activates nuclear factor-kappab and induces endothelial and circulating intercellular adhesion molecule-1. J Clin Invest 1999;103:1329-1335.
    105. Maksimenko AV, Schechilina YV, Tischenko EG. Role of the glycosaminoglycan microenvironment of hyaluronidase in regulation of its endoglycosidase activity. Biochemistry 2003;68:862-868.
    106. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997;100:297-304.
    107. Sim JS, Jun G, Toida T, Cho SY, Choi DW, Chang SY, et al. Quantitative analysis of chondroitin sulfate in raw materials, ophthalmic solutions, soft capsules and liquid preparations. J Chromatogr B Analyt Technol Biomed Life Sci 2005;818:133-139.
    108. Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta biomater 2006;2:313-320.
    109. Zhao L, Chang J. Preparation and characterization of macroporous chitosan/wollastonite composite scaffolds for tissue engineering. J Mater Sci Mater Med 2004;15:625-629.
    110. Cucchiarini M, Madry H. Gene therapy for cartilage defects. J Gene Med 2005; 7:1495-1509.
    111. Li Z, Yasuda Y, Li W, Bogyo M, Katz N, Gordon RE, et al. Regulation of collagenase activities of human cathepsins by glycosaminoglycans. J Biol Chem 2004;279:5470-5479.
    112. Nandini CD, Mikami T, Ohta M, Itoh N, Akiyama-Nambu F, Sugahara K. Structural and functional characterization of oversulfated chondroitin sulfate/dermatan sulfate hybrid chains from the notochord of hagfish. Neuritogenic and binding activities for growth factors and neurotrophic factors. J Biol Chem 2004;279:50799-50809.
    113. Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum 2000;43:1916-1926.
    114. Sampaio Lde O, Bayliss MT, Hardingham TE, Muir H. Dermatan sulphate proteoglycan from human articular cartilage. Variation in its content with age and its structural comparison with a small chondroitin sulphate proteoglycan from pig laryngeal cartilage. Biochem J 1988;254:757-764.
    115. Roughley PJ, White RJ. Dermatan sulphate proteoglycans of human articular cartilage. The properties of dermatan sulphate proteoglycans I and II. Biochem J 1989;262:823-827.
    116. Matsushita T, Matsui N, Fujioka H, Kubo S, Kuroda R, Kurosaka M, et al. Expression of transcription factor Sox9 in rat L6 myoblastic cells. Connect Tissue Res 2004;45:164-173.
    117. Critchlow MA, Bland YS, Ashhurst DE. The expression of collagen mRNAs in normally developing neonatal rabbit long bones and after treatment of neonatal and adult rabbit tibiae with transforming growth factor-beta 2. Histochem J 1995; 27:505-515.
    118. Guo T, Zhao J, Chang J, Ding Z, Hong H, Chen J, et al. Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta1 for chondrocytes proliferation. Biomaterials 2006;27:1095-1103.
    119. Lee JE, Kim SE, Kwon IC, Ahn HJ, Cho H, Lee SH, et al. Effects of a chitosan scaffold containing TGF-beta1 encapsulated chitosan microspheres on in vitro chondrocyte culture. Artif Organs 2004;28:829-839.
    120. Fan H, Hu Y, Qin L, Li X, Wu H, Lv R. Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res A 2006;77:785-794.
    121. Shum L, Wang X, Kane AA, Nuckolls GH. BMP4 promotes chondrocyte proliferation and hypertrophy in the endochondral cranial base. Int J Dev Biol 2003;47:423-431.
    122. Sailor LZ, Hewick RM, Morris EA. Recombinant human bone morphogenetic protein-2 maintains the articular chondrocyte phenotype in long-term culture. J Orthop Res 1996;14:937-945.
    123. Iozzo RV. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 1999;274:18843-18846.
    124. Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 1984; 223:587-597.
    125. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990;346:281-284.
    126. Zhang Z, Fan J, Becker KG, Graff RD, Lee GM, Francomano CA. Comparison of gene expression profile between human chondrons and chondrocytes: a cDNA microarray study. Osteoarthritis Cartilage 2006;14:449-459.
    127. Pavloff N, Staskus PW, Kishnani NS, Hawkes SP. A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. J Biol Chem 1992;267:17321-17326.
    128. Kashiwagi M, Tortorella M, Nagase H, Brew K. TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 2001;276:12501-12504.
    129. Su S, Dehnade F, Zafarullah M. Regulation of tissue inhibitor of metalloproteinases-3 gene expression by transforming growth factor-beta and dexamethasone in bovine and human articular chondrocytes. DNA Cell Biol 1996;15:1039-1048.
    130. Drynda A, Quax PH, Neumann M, van der Laan WH, Pap G, Drynda S, et al. Gene transfer of tissue inhibitor of metalloproteinases-3 reverses the inhibitory effects of TNF-alpha on Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. J Immunol 2005;174:6524-6531.
    131. Roman-Blas JA, Jimenez SA. NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage 2006;14:839-848.
    132. Ravanti L, Hakkinen L, Larjava H, Saarialho-Kere U, Foschi M, Han J, et al. Transforming growth factor-beta induces collagenase-3 expression by human gingival fibroblasts via p38 mitogen-activated protein kinase. J Biol Chem 1999;274:37292-37300.
    133. Shlopov BV, Smith GN, Jr., Cole AA, Hasty KA. Differential patterns of response to doxycycline and transforming growth factor beta1 in the down-regulation of collagenases in osteoarthritic and normal human chondrocytes. Arthritis Rheum 1999;42:719-727.
    134. Kim HS, Shang T, Chen Z, Pflugfelder SC, Li DQ. TGF-beta1 stimulates production of gelatinase (MMP-9), collagenases (MMP-1, -13) and stromelysins (MMP-3, -10, -11) by human corneal epithelial cells. Exp Eye Res 2004;79: 263-274.
    135. Gardner H, Broberg A, Pozzi A, Laato M, Heino J. Absence of integrin alpha1beta1 in the mouse causes loss of feedback regulation of collagen synthesis in normal and wounded dermis. J Cell Sci 1999;112:263-272.
    136. Peiris D, Pacheco I, Spencer C, MacLeod RJ. The extracellular calcium-sensing receptor reciprocally regulates the secretion of BMP-2 and the BMP antagonist Noggin in colonic myofibroblasts. Am J Physiol 2007;292:G753-766.
    137. Kawashima H, Hirose M, Hirose J, Nagakubo D, Plaas AH, Miyasaka M. Binding of a large chondroitin sulfate/dermatan sulfate proteoglycan, versican, to L-selectin, P-selectin, and CD44. J Biol Chem 2000;275:35448-35456.
    138. Denholm EM, Cauchon E, Poulin C, Silver PJ. Inhibition of human dermal fibroblast proliferation by removal of dermatan sulfate. Eur J Pharmacol 2000;400:145-153.
    139. Faham S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC. Heparin structure and interactions with basic fibroblast growth factor. Science 1996;271:1116-1120.
    140. Wolff EA, Greenfield B, Taub DD, Murphy WJ, Bennett KL, Aruffo A. Generation of artificial proteoglycans containing glycosaminoglycan-modified CD44. Demonstration of the interaction between rantes and chondroitin sulfate. J Biol Chem 1999;274:2518-2524.
    141. Petersen F, Bock L, Flad HD, Brandt E. Platelet factor 4-induced neutrophil-endothelial cell interaction: involvement of mechanisms and functional consequences different from those elicited by interleukin-8. Blood 1999;94:4020-4028.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE