簡易檢索 / 詳目顯示

研究生: 林克閩
Ko-Min Lin
論文名稱: 複合型微胞在水溶液中聚集行為之探討及其在癌症治療上之應用
Aggregation Behavior of Mixed-Micelles in Aqueous Solution and Application in Cancer Therapy
指導教授: 薛敬和
Ging-Ho Hsiue
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 148
中文關鍵詞: 複合型高分子微胞酸鹼應答性高分子接枝共聚物團聯共聚物細胞內藥物釋放
外文關鍵詞: mixed polymeric micelle, pH-responsive polymer, graft copolymer, diblock copolymer, intracellular drug delivery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是製備具溫度應答性、酸鹼應答性及生物可分解性之高分子poly(N-isopropyl-acrylamide-co-methyl acrylic acid) (PLA-g-P(NIPAAm -co-MAAc))接枝共聚物,及具免疫隱蔽性與生物可分解性之高分子poly(2-ethyl-2-oxazoline)-b-poly(D,L- lactide) ( PLA-PEOz)雙團聯共聚物。利用PLA-g-P(NIPAAm-co- MAAc)與PLA-PEOz兩種雙性共聚合物製備複合型高分子微胞,設計一同時具有環境應答及免疫隱蔽性之複合型高分子微胞,作為智慧型抗癌藥物載體。藉由高分子微胞表面改質及利用血液與細胞內酸鹼值的差異,達到提高體內循環時間與特定部位釋放藥物之效果。並利用兩者臨界微胞濃度的差異,來探討複合型高分子奈米微胞形成之機制。研究結果顯示當PLA-PEOz二團聯共聚物的臨界微胞濃度小於或約等於PLA-g-P(NIPAAm-co-MAAc)接枝共聚物的臨界微胞濃度時,則可形成完整之複合型奈米高分子微胞;而當PLA-PEOz二團聯共聚物的臨界微胞濃度大於PLA-g-P(NIPAAm-co-MAAc)接枝共聚物的臨界微胞濃度時,則無法形成完整之複合型高分子奈米微胞。由於複合型高分子奈米微胞內核由疏水性高分子PLA所組成,因此可用以包覆疏水性抗癌藥物doxorubicin (free base)。本研究所製備之含doxorubicin複合型奈米高分子微胞由體外藥物模擬釋放研究中,可發現在37℃且pH 7.4之環境下可以有效的保護藥物,而在37℃且pH 5.0時則可快速將藥物釋放,達到環境應答之功能。利用人類子宮頸癌細胞HeLa cells與複合型高分子奈米微胞進行細胞培養實驗,結果顯示複合型高分子奈米微胞具有非常良好之生物相容性;而在細胞毒殺實驗中,複合型高分子奈米藥物微胞對於人類子宮頸癌細胞亦有非常良好之抑制其增生之效果。共軛焦顯微鏡影像證明複合高分子微胞結構在細胞內酸性胞器被破壞,藥物成功地在細胞質內被釋放。由於胞飲作比擴散作緩慢,所以藥物微胞的生長抑制效果比直接使用doxorubicin慢。因此,本研究所製備之複合型高分子奈米微胞,可有效改良原有之高分子微胞之表面特性,使其具有較佳之生物相容性,又同時保有其原有之環境應答功能。並為未來藥物制放系統提供一個新的發展方向。


    In this study, poly(N-isopropyl acrylamide-co-methyl acrylic acid) (PLA-g-P(NIPAAm-co-MAAc) graft copolymer with thermal sensitivity, pH sensitivity and biodegradability was synthesized by free radical polymerization from NIPAAm monomers, MAAc monomers and PLA macromonomers. Additionally, poly(2-ethyl-2-oxazoline)-b-poly(D,L- lactide) (PLA-PEOz) diblock copolymer that can be avoided mononuclear phagocyte systems recognition was synthesized by ring opening polymerization. A novel nanostructure, which was called mixed micelle, was prepared from PLA-g-P(NIPAAm-co-MAAc) and PLA-PEOz by a solvent exchange process. This nanostructure not only provide a particle modification technique to hide the inner structure from graft copolymer or to prepare a stealth micelle for avoiding the recognition by the physiological system, but also provide a environmental sensitive core to control the anticancer drug released for application in cancer therapy.
    This study was divided into two sections. In the first section, the difference of critical micelle concentration (CMC) of each copolymer was used to study the formation mechanism of mixed micelles. From our study, the completely mixed micelle was formed as the CMC of diblock copolymer was lower than or equal to that of graft copolymer. As the CMC of diblock copolymer was higher than that of graft copolymer, otherwise, the mixed micelle and micelles from each copolymer were coexisted. In section two, the hydrophobic anticancer drug, doxorubicin (Dox), was incorporated into mixed micelle for used in cancer therapy. Dialysis method was conducted on the Dox and copolymer solution, and mixed micelles with Dox were formed, exhibiting a uniform particle size of 262.3 nm. From UV/Vis spectrophotometer analysis, drug content of mixed micelle incorporated with Dox was around 25 %. In vitro drug released evaluation was conducted at 37 ℃ with different pH levels. In neutral surrounding, the release of drug form mixed micelles with Dox was less, indicating that the mixed micelle was stabilized and efficiently protect the drug under such surrounding. In contrast, a significant release of Dox was observed in acidic surrounding. That is because of the P(NIPAAm-co-MAAc)s collapsed and aggregated in acidic surroundings, deforming the inner core, causing Dox to be released from the mixed micelles. On the other hand, cytotoxicities of free Dox and mixed micelle with Dox were determined by measurement the inhibition of HeLa cell growth using a tetrazolium dye (MTT) assay. The result exhibited that Dox released from mixed micelle also demonstrated pharmaceutically activity. In summary, this study presents the first example of self-assembly from diblock and graft copolymer, not only involving a particle modification technique to hide the inner structure and to increase the biocompatibility of materials, but also combining the advantages of the two copolymers to exhibit multi-functions for used in drug delivery.

    中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 研究背景與動機 第二章 相關理論與文獻 2-1 溫度與酸鹼應答性高分子 2-2 生物可分解高分子 2-2-1 聚醯胺(polyamide 2-2-2 聚酯(polyester) 2-3 高分子微胞之介紹 2-3-1 高分子微胞之形成原理 2-3-2 高分子微胞在藥物載體之應用 2-3-3 高分子藥物微胞載體在癌症治療上之應用 2-4 複合型奈米微胞 2-4-1 高分子-微脂粒複合型奈米微胞(人造微脂粒) 2-4-2 高分子-高分子複合型奈米微胞 第三章 實驗方法 3-1 實驗藥品 3-2 實驗儀器與裝置 3-3 雙性共聚合物之合成 3-3-1 PLA-PEOz二團聯共聚物 3-3-2 PLA-g-P(NIPAAm-co-MAAc)接枝共聚物 3-4高分子鑑定與分析 3-5臨界微胞濃度(critical micelle concentration, CMC)分析 3-6製備PLA-PEOz及PLA-g-P(NIPAAm-co-MAAc)高分子微胞 3-7粒徑與界面電位分析 3-8相轉移溫度分析 3-9高分子微胞結構破壞分析 3-10藥物包覆 3-11體外藥物釋放模擬 3-12細胞存活率與細胞毒殺實驗 3-13共軛焦顯微鏡觀測藥物分佈與微胞之內吞作用 第四章 結果與討論 4-1合成PLA-PEOz與PLA-g-P(NIPAAm-co-MAAc) 4-2 PLA-PEOz與PLA-g-P(NIPAAm-co-MAAc)之熱性質分析 4-3臨界微胞濃度 4-4奈米高分子微胞 4-5高分微胞之相轉移溫度 4-6高分微胞之結構破壞 4-7奈米高分子微胞之形態分析 4-8高分子微胞之穩定性分析 4-9細胞存活率 4-10體外藥物釋放模擬 4-11細胞毒殺實驗 4-12藥物擴散與藥物微胞內吞作用之觀測 第五章 結論 第六章 參考文獻

    1.藥用醫理學,九州圖書文物有限公司。
    2.P. Ehrlich, Collected study on immunology, John Wiley, New York, pp. 441 (1906).
    3.D. A. Tomalia, A. M. Naylor and W. A. Goddard, III Angew. Chem. Int. Ed. Engl., 1990, 29, 138.
    4.Z. Tuzar and P. Kratochvil, Adv. Colloid Interface Sci., 1976, 6, 201.
    5.Z. Gao and A. Eisenberg, Macromolecules, 1993, 26, 7353.
    6.S. Stolnik, L. Illum, and S. S. Davis, Adv. Drug Deliv. Rev., 1995, 16, 195.
    7.R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer, Science, 1994, 263, 1600.
    8.T. Yamaoka, Y. Tabata and Y. Ikada, J. Pharm. Sci., 1994, 83, 601.
    9.N. B. Graham and M. Zulfiqar, Polymer, 1989, 30, 2130.
    10.U. Gaur, S. K. Sahoo, K. De Tapas, P. C. Ghosh, A. Maitra, and P. K. Ghosh, International Journal of Pharmaceutics, 2000, 202, 1.
    11.Y. Zhang, N. Kohler, and M Zhang., Biomaterials, 2002, 23, 1553.
    12.J. Lee Robert, and S. Low Philip, Biochim. biophys. acta, 1995, 1233, 134.
    13.C. S. Cho, K. Y. Cho, I. K. Park, S. H. Kim, T. Sasagawa, M. Uchiyama, and T. Akaike, J. Control. Release, 2001, 77, 7.
    14.I. S. Kim, and S. H. Kim, International Journal of Pharmaceutics, 2003, 257, 195.
    15.C. S. Cho, A. Kobayashi, R. Takei, T. Ishihara, A. Maruyama, and T. Akaike, Biomaterials, 2000, 22, 45.
    16.F. Kohori, K. Skai, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano, J. Control. Release, 1998, 55, 87.
    17.J. E. Chung, M. Yokoyama, and T. Okano, J. Control. Release, 2000, 65, 93.
    18.M. D. C. Topp, P. J. Dijkstra, H. Talsma, and J. Feijen, Macromolecules, 1997, 30, 8518.
    19.Functional and site-specific macromolecular micelles as high potential drug carriers, Colloids and Surfaces B: Biointerfaces, 1999, 16, 207.
    20.F. Kohori, M. Yokoyama, K. Sakai, and T. Okano, J. Control. Release, 2002, 78, 155.
    21.G.S. Kwon, K. Kataoka, Adv. Drug Deliv. Rev., 1995, 16, 295–309.
    22.G.S. Kwon, T. Okano, Adv. Drug Deliv. Rev., 1996, 21, 107–116.
    23.L. Zhang, A. Eisenberg, Science, 1995, 268 , 1728–1731.
    24.L. E. Bromberg, E. S. Ron, Adv. Drug Deliv. Rev., 1998, 31, 197.
    25.A. S. Hoffman, A. Afrassiabi, and L.C. Dong., J. Contr. Rel., 1986, 4, 213.
    26.Y. H. Bae, T. Okano and S. W. Kim. Makromol. Chem. Rapid Commun., 1988, 9, 185.
    27.A. Muhlebach, S.G. Gaynor, and K. Matyjaszewski, Macromolecules, 1998, 31, 6046.
    28.Jayachandran N. Kizhakkedathu, Kainthan Rajesh Kumar, Diane Goodman and Donald E. Brooks, Polymer, 2004, 45, 7471–7489.
    29.J.E. Chung, M. Yokoyama, K. Suzuki, T. Aoyagi, Y. Sakurai, and T. Okano, Colloids Surfaces (B: Biointerfaces), 1997, 9, 37.
    30.L. Dong and A. Hoffman., J. Contr. Rel., 1991, 15, 141.
    31.C. S. Brazel and N. A. Peppas., J. Contr. Rel., 1996, 39, 57.
    32.G. Chen and A. S. Hoffman., Nature, 1995, 373, 49.
    33.T. Nonaka, T. Ogata and S. Kurihara., J. Applied polym. Sci., 1994, 52, 951.
    34.R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai and T. Okano., Nature, 1995, 374, 240.
    35.S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Control. Release, 1997, 48, 157.
    36.J. E. Chung, M. Yokoyama, T. Okano, J. Control. Release, 2000, 65, 93.
    37.F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato, Y. Sakurai, T. Okano, Colloids Surf. B Biointerf., 1999, 16, 195.
    38.J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, Journal of Controlled Release, 1998, 53 , 119-130.
    39.V. S. Trubetskoy, Adv. Drug Deliv. Rev., 1999, 37, 81.
    40.S. Liu., S. P. Armes, Langmuir, 2003, 19, 4332.
    41.Futian Liu and Adi Eisenberg, J. Am. Chem. Soc., 2003, 125, 15059-15064.
    42.R. Chandra, R. Rustgi, Prog. Polym. Sci., 1998, 23, 1273-1335.
    43.J. R. Gomez and G. Gomez, Brit. J. Clin. Pract., 1972, 26, 33-34.
    44.K. E. Uhrich, S. M. Cannizzaro, R. S. Langer, K. M. Shakesheff, Chem. Rev., 1999, 99, 3181 -3198.
    45.I. C. Kwon, Y. H. Bae and S. W. Kim, Nature, 1991, 354, 291.
    46.H. R. Kricheldorf, I. Kreiser-Saunders, C. Boettcher, Polymer, 1995, 36(6), 1253~1259.
    47.S. Li, H. Garreau, B. Pauvert, J. McGrath, A. Toniolo, M. Vert, Biomacromolecules, 2002, 3, 525-530.
    48.L. Liu, S. Li, H. Garreau, M. Vert, Biomacromolecules, 2000, 1, 350-359.
    49.M.-C. Jones, J.-C. Leroux, Eur. J. Pharm. Biopharm., 1999, 48, 101–111.
    50.P.H. Elworthy, A.T. Florence, C.B. Macfarlane (Eds.), Solubilization by Surface Active Agents, Chapman and Hall, London, UK, 1968.
    51.Z. Gao, A. Eisenberg, Macromolecules, 1993, 26, 7353–7360.
    52.F.M. Winnik, A.R. Davidson, G.K. Hamer, H. Kitano, Macromolecules, 1992, 25, 1876–1880.
    53.S. Cammas, K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, T. Okano, J. Contr. Rel., 1997, 48, 157–164.
    54.G.S. Kwon, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Pharm. Res., 1993, 10, 970–974.
    55.G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, K. Kataoka, Langmuir, 1993, 9, 945–949.
    56.R. Nagarajan, K. Ganesh, Macromolecules, 1989, 22, 4312–4325.
    57.P. Alexandridis, J.F. Holzwarth, T.A. Hatton, Macromolecules, 1994, 27, 2414–2425.
    58.P. Alexandridis, V. Athanassiou, S. Fuluda, T.A. Hatton, Langmuir, 1994, 10, 2604–2612.
    59.M. Yokoyama, CRC Crit. Rev. Ther. Drug Carrier Syst., 1992, 9, 213–248.
    60.F.M. Winnik, A.R. Davidson, G.K. Hamer, H. Kitano, Macromolecules, 1992, 25, 1876–1880.
    61.M. Yokoyama, T. Okano, K. Kataoka, J. Contr. Rel., 1994, 32, 269– 277.
    62.S.B. La, T. Okano, K. Kataoka, J. Pharm. Sci., 1996, 85, 85–90.
    63.J.E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, T. Okano, J. Contr. Rel., 1998, 53, 119–131.
    64.M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Sakurai, K. Kataoka, S. Inoue, Cancer Res , 1990, 50, 1693–1700.
    65.S. Katayose, K. Kataoka, J. Pharm. Sci., 1998, 87, 160–163.
    66.L.W. Seymour, K. Kataoka, A.V. Kabanov, Cationic block copolymers as self-assembling vectors for gene delivery, in: A.V. Kabanov, L.W. Seymour, P. Felgner (Eds.), Self-Assembling Complexes for Gene Delivery. From Laboratory to Clinical Trial, John Wiley and Sons, Chichester, 1998, pp. 219–239.
    67.K. Kataoka, H. Togawa, A. Harada, K. Yasugi, T. Matsumoto, S. Katayose, Macromolecules, 1996, 29, 8556–8557.
    68.M.A. Wolfert, E.H. Schacht, V. Toncheva, K. Ulrich, O. Nazarova, L.W. Seymour, Human Gene Ther., 1996, 7, 2123–2133.
    69.L. Xing,W.L. Mattice, Langmuir, 1998, 14, 4074–4080.
    70.C. Allen, D. Maysinger, A. Eisenberg, Coll. Surf. B: Biointerf., 1999, 16, 1–35.
    71.Teng, M.E. Morrison, P. Munk, S.E. Webber, Macromolecules, 1998, 31, 3578–3587.
    72.Chilkoti A., Dreher R., Meyer E. and Raucher D., Adv. Drug Deliv. Rev., 2002; 54, 613.
    73.Putnam D. and Kopecek J., Adv. Polym. Sci., 1994, 122, 55.
    74.Duncan R., Selective endocytosis, In V. H. Lee (ed.), Sustained and Controlled Drug Delivery, Marcel Dekker, New York, 1986, 581.
    75.Hoes C. J. T. and Feijen J., Makromol Chem. 1993, 70, 119.
    76.Brigger I., Dubernet C. and Couvreur P., Adv. Drug Deliv. Rev., 2002, 54, 631.
    77.Gao X., Cui Y., Levenson M., Chung W.K. and Nie S., Nat. Biotechnol., 2004, 22, 969.
    78.Jain R.K., J. Control. Release, 2001, 74, 7.
    79.Maeda H., Wu J., Sawa T., Matsumura Y. and Hori K., J. Control. Release, 2000, 65, 271.
    80.Duncan R., Pharmaceutical Science & Technology Today, 1999, 2, 441.
    81.Duncan R., Nat. Rev. Drug Discovery, 2003, 2, 347.
    82.Gillies R. and Frechet M.J., Bioconjugate Chem., 2005, 16, 361.
    83.Lee C., Yoshida M., Frechet M.J., Dy E. and Szoka C., Bioconjugate Chem., 2005, 16, 535.
    84.Bae Y., Fukushima S., Harada A., and Kataoka K., Angew. Chem. Int. Ed., 2003, 42, 4640.
    85.Bae Y., Nishiyama N., Fukushima S., Koyama H., Yasuhito M., and Kataoka K., Bioconjugate Chem., 2005, 16, 121.
    86.Lo C.L., Lin K.M. and Hsiue G.H., J. Control. Release, 2005, 104, 477.
    87.Kopecek J., J. Control. Release, 1990, 11, 279.
    88.Omelyanenko V., Kopeckova P., Gentry C. and Kopecek, J., J. Control. Release, 1998, 53, 25.
    89.Soppimath S., Tan C.W. and Yand Y.Y., Adv. Matter., 2005, 17, 318.
    90.Lee E.S., Na K and Bae Y.H., Nano Lett. 2005, 5, 325.
    91.P. A. Sivakumar, K. Panduranga Rao, Reactive & Functional Polymers, 2001, 49, 179–187.
    92.Anna Kim, Mi-Ok Yun, Yu-Kyoung Oh, Woong-Shick Ahn, Chong-Kook Kim, International Journal of Pharmaceutics, 1999, 180, 75–81.
    93.Chittima Managit, Shigeru Kawakami, Makiya Nishikawa, Fumiyoshi Yamashita, Mitsuru Hashida, International Journal of Pharmaceutics, 2003, 266, 77–84.
    94.Jordi Boada, Montserrat Gallardo, Marı´a Asuncio´n Alsina, Joan Estelrich, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001,182, 191–198.
    95.Hirofumi Takeuchi, Hiroyuki Kojima, Hiromitsu Yamamoto, Yoshiaki Kawashima, Journal of Controlled Release, 2001, 75 , 83–91.
    96.Junhwa Shin, Pochi Shum, David H. Thompson, Journal of Controlled Release, 2003, 91,187–200.
    97.Hirofumi Takeuchi, Hiromitsu Yamamoto, Toshitada Toyoda, Hidekazu Toyobuku, Tomoaki Hino, Yoshiaki Kawashima, International Journal of Pharmaceutics, 1998, 164, 103–111.
    98.Hirofumi Takeuchi, Hiroyuki Kojima, Toshitada Toyoda, Hiromitsu Yamamoto, Tomoaki Hino, Yoshiaki Kawashima, European Journal of Pharmaceutics and Biopharmaceutics, 1999, 48, 123-129.
    99.J. Guo, Q. Ping, G. Jiang, L. Huang, Y. Tong, International Journal of Pharmaceutics, 2003, 260, 167–173.
    100.Ingrid Henriksen, Sissel R. Vågen, Serre A. Sande, Gro Smistad, Jan Karlsen, Internation Journal of Pharmaceutics, 1997, 146, 193-204.
    101.V. A. Kabanov, A. A. Yaroslavov, Journal of Controlled Release, 2002, 78, 267–271.
    102.Nitin Guptaa, Amish A. Patela, Raja Nassarb, Yuri M. Lvovc, Michael J. McShaned, James D. Palmera, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004, 245, 137–142.
    103.A. A. Yaroslavov, V. Ye. Klu’kov, A. A. Efimova, M. O. Ignatiev, Thin Solid Films, 1995, 265, 66-70.
    104.Jin-Chul Kim *, Jong-Duk Kim, Colloids and Surfaces B: Biointerfaces, 2002, 24, 45–52.
    105.Shuichi Osanai, Kazuhiro Nakamura, Biomaterials, 2000, 21, 867-876.
    106.Chirasak Kusonwiriyawonga, Petra van de Weteringb, Jeffrey A. Hubbellb, Hans P. Merklea, Elke Walter, European Journal of Pharmaceutics and Biopharmaceutics, 2003, 56, 237–246.
    107.Jean-Christophe Leroux, Emmanuelle Roux, Dorothee Le Garrec, Keelung Hong, Daryl C. Drummond, Journal of Controlled Release, 2001, 72, 71–84.
    108.P. sens, C. M. Marques, and J.-F. Joanny, Macromolecules, 1996, 29, 4880-4890.
    109.Tianbo Liu, Vaughn M. Nace, and Benjamin Chu, Langmuir, 1999, 15, 3109-3117.
    110.(a) Miroslav Štêpánek, Klara Podhajecka, Eva Tesarova, and Karel Prochazka, Langmuir, 1999, 17, 4240-4224. (b) Miroslav Štêpánek, Klara Podhajecka, and Karel Prochazka, Langmuir, 1999, 17, 4245-4250.
    111.S. Dia, P. Ravi, C. Y. Leong, K. C. Tam, and L. H. Gan, Langmuir, 2004, 20, 1579-1604.
    112.Stefan Groger, Dieter Geschke, Jorg Karger, Frank Stallmach, and Cestmir Konak, Macromolecular Rapid Communications, 2004, 1015-1018.
    113.Ping Cai, Chengqing Wang, Jing Ye, Zuowei Xie, and Chi Wu, Macromolecules, 2004, 37, 3438-3443.
    114.Wangqing Zhang, Linqi Shi, Yingli An, Lichao Gao, and Binglin He, J. Phys. Chem. B, 2004, 108, 200-204.
    115.Ning Kang, Marie-Eva Perron, Robert E. Prud’homme, Yubao Zhang, Genevieve Gaucher, and Jean-Christophe Leroux, Nano Letters, 2005, 5, 315-319.
    116.Igor L. Radtchenko, Gleb B. Sukhorukov , Helmuth Möhwald, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 127–133.
    117.Atsushi Harada and Kazunori Kataoka, Science, 1999, 283, 65.
    118.Pavel Matějíček, Jana Humpolíčková, Karel Procházka, Zdeněk Tuzar, Milena Špírková, Martin Hof, Stephen E. Webber, J. Phys. Chem. B, 2003, 107, 8232-8240.
    119.Wangqing Zhang, Linqi Shi, Yingli An, Lichao Gao, and Binglin He, J. Phys. Chem. B, 2004, 108, 200-204.
    120.Evgeniy A. Lysenko, Pavel S. Chelushkin, Tatiana K. Bronich, Adi Eisenberg, Victor A. Kabanov, and Alexander V. Kabanov, J. Phys. Chem. B, 2004, 108, 12352-12359.
    121.Miroslav Štěpánek, Klára Podhájecká, Eva Tesařová, and Karel Procházka, Langmuir, 2001, 17, 4240-4244.
    122.Klára Podhájecká, Miroslav Štěpánek, and Karel Procházka, Langmuir, 2001, 17, 4245-4250.
    123.Honda C., Yamamoto K., Nose T., Polymer, 1996, 37, 1975.
    124.Sens P., Marques C., M. Joanny, J.-F., Macromolecules, 1996, 29, 4880.
    125.Čestmír Koňák, Martin Helmstedt, Macromolecules, 2003, 36, 4603-4608.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE