簡易檢索 / 詳目顯示

研究生: 黃致豪
Zhi-Hao Haung
論文名稱: 利用重新繞線做擁塞辨識的緩衝器插入
Congestion Aware Buffer Insertion with Re-routing
指導教授: 麥偉基
Wai-Kei Mak
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 26
中文關鍵詞: 緩衝器候選者擺放擁塞繞線擁塞
外文關鍵詞: buffer candidate, placement congestion, routing congestion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著超大型積體電路技術的快速發展,晶片的複雜度快速的增加,而且導線及邏輯閘的數目大量的成長。想在有限的晶片空間裡,達到滿足時間(timing)的要求而做繞線與擺放緩衝器變的非常困難。另外,當我們自動化插入緩衝器和繞線時,聰明地考慮擁塞程度(congestion)的管理變成是必要的條件。在這篇論文中,我們的貢獻是提出一個新的演算法,取名為CABIR,藉由在初始的Steiner tree上做重新繞線以降低繞線擁塞成本,並且產生一些緩衝器候選位置,它們有著最低總和的擺放擁塞成本。然後,我們利用所產生的低擁塞成本的樹和在樹上的一些低擺放擁塞成本的緩衝器候選位置,當作van Ginneken演算法的輸入。跟PRAB的演算法比較後[13],實驗結果顯示我們的方法可以分別降低時間,繞線擁塞成本和擺放擁塞成本達到2%,4%和28%。而且我們的執行時間也很快。


    With the rapidly progress of VLSI technology, the complexity of a chip critically increases and the enormously growth of wires and gates, it becomes difficult to place buffers and route wires to meet timing in a limited space. In addition, it becomes necessary to consider congestion management intelligently while we insert buffers and route wires automatically. In this thesis, our contribution is to propose a new algorithm called CABIR to reduce the routing congestion cost by re-routing the initial Steiner tree and to generate some buffer candidate locations with the lowest total placement congestion cost. Then we pass the low congestion routing tree along with a set of low density buffer candidate locations as the input of the van Ginneken’s algorithm. Compare with the PRAB algorithm [13], the experimental results show that our approach is able to reduce timing, routing congestion cost and placement congestion cost up to 2%, 4% and 28% respectively. Also our runtime is fast.

    誌謝辭...............................................i 中文摘要............................................ii Abstract...........................................iii Contents............................................iv List of Figures......................................v List of Tables......................................vi Chapter 1............................................1 Introduction......................................1 Chapter 2............................................6 Problem Formulation...............................6 Chapter 3............................................8 The algorithm.....................................8 3.1 Methodology Overview.......................8 3.2 Steiner Tree Re-routing....................9 3.3 Candidate Locations Picking...............11 3.4 New Candidate Location for Steiner Node...13 3.5 Overall Algorithm.........................16 Chapter 4...........................................19 Experimental Results.............................19 Chapter 5...........................................23 Conclusion and Future Work.......................23 Reference...........................................24

    [1] J. Cong and D. Z. Pan,“Interconnect Delay Estimation Models for Synthesis and Design Planning,”in Proc. Asia and South Pacific Design Automation Conference, pp. 97-100, 1999.

    [2] C. J. Alpert, A. Devgan, and S. T. Quay,“Buffer Insertion for Noise and Delay Optimization,”in Proc. Design Automation Conference, pp. 362-367, 1998.

    [3] J. Cong,“Challenges and Opportunities for Design Innovations in Nanometer Technologies,”SRC Design Sciences Concept Paper, 1997.

    [4] P. Saxena, N. Menezes, P. Cocchini, and D. Kirkpatrick,“Repeater scaling and its impact on CAD,”In IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 23, no. 4, pp. 451-463, 2004.

    [5] L. P. P. P. van Ginneken,“Buffer placement in distributed RC-tree networks for minimal Elmore delay,”In Proc. International Symposium on Circuits and Systems, pp. 865-868, 1990.

    [6] J. Lillis, C. K. Cheng, and T. T. Y. Lin,“Optimal wire sizing and buffer insertion for low power and a generalized delay model,”In IEEE International Conference on Computer Aided Design, pp. 138-143, 1995.

    [7] C. J. Alpert and A. Devgan,“Wire Segmenting For Improved Buffer Insertion,”in Proc. Design Automation Conference, pp. 588-593, 1997.

    [8] W. Shi and Z. Li,“An O(nlogn) time algorithm for optimal buffer insertion,”in Proc. Design Automation Conference, pp. 580-585, 2003.

    [9] T. Okamoto and J. Cong,“Buffered Steiner Tree Construction with Wire Sizing for Interconnect Layout Optimization,”in Proc. International Conference on Computer-Aided Design, pp. 44-49, 1996.

    [10] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz,“Simultaneous Routing and Buffer Insertion with Restriction on Buffer Location,”in Proc. Design Automation Conference, pp. 96-99, 1999.

    [11] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, A.B. Kahng, J. Lillis, B. Liu, S.T. Quay, S.S. Sapatnekar, and A.J. Sullivan,“Buffered Steiner trees for difficult instances,”in IEEE Trans. on Computer-Aided Design, vol. 21, no. 1, pp. 3-14, 2002.

    [12] C.J. Alpert, G. Gandham, M. Hrkic, J. Hu, and S.T. Quay,“Porosity Aware Buffered Steiner Tree Construction,”in Proc. International Symposium on Physical Design , pp.158-165, 2003

    [13] C. Sze, J. Hu, and C. J. Alpert,“A Place and Route Aware Buffered Steiner Tree Construction,”in Proc. Asia and South Pacific Design Automation Conference, pp. 355 - 360, 2004.
    [14] W. C. Elmore,“The Transient Response of Damped Linear Network with Particular Regard to Wideband Amplifiers,”J. Applied Physics 19, pp.55-63, 1948.

    [15] S. Dhar and M. A. Franklin,“Optimum Buffer Circuits for Driving Long Uniform Lines,”IEEE Journal of Solid-State Circuits, vol. 26, no. 1, pp.32-40, 1991.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE