簡易檢索 / 詳目顯示

研究生: 陳鼎仁
chen, ting-jen
論文名稱: 藉由調變鉬背電極達到平整表面銅銦鋁硒光吸收層之研究
Investigations to obtain smooth CIAS absorber layer by modifying Mo back contact
指導教授: 黃惠良
口試委員: 曾百亨
林堅楊
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 155
中文關鍵詞: 銅銦鋁硒太陽電池平整吸收層
外文關鍵詞: cias, mo, solar cell, flat absorber
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 此研究是專注在如何使得CIAS吸收層能在硒化過程中獲得平整的表面以及減少晶格邊界來製作其太陽電池,在起初我們使用已在溫度和時間最佳化的硒化製程來制作太陽電池,但由於其CIAS吸收層的表面粗糙與多孔的晶粒而增加了漏電流導致效率低下,以至於我們開始尋找影響CIAS吸收層的因素;經由資料攝取,我們發現在其背電極的Mo的性質會直接或間接影響其CIAS成長的條件,其中包含了在硒化過程中在介面成長的MoSe2 以及從SLG Glass中擴散進入CIAS層的Na元素接會影響其成長的機制,另外在硒化過程中其硒粉的放置量也在從CIA前驅物硒化成CIAS層時對於MoSe2的成長扮演了一個很重要的角色,是故我們發現其(100)相的MoSe2可以使得CIAS層沿著其結構成長,另外在Mo緻密度影響著其Na 擴散進入的含量,我們藉由調變其含量來觀察,在最後獲得了平整的CIAS吸收層,並用其製作CIAS太陽電池,我們最好的太陽電池為2.256%,VOC : 0.24 V,JSC:25.364 mA/cm2,F.F.:0.371。


    The main focus of this study was on the invention of device quality CIAS absorber layer with bigger grain size and smooth surface for CIAS solar cell. Initially we optimized the selenization process parameters such as temperature and time duration to produce CIAS absorber layer, but CIAS solar cell fabricated with this CIAS layer showed low efficiency and this is due to the rough surface and porous structure of CIAS absorber layer which causes serious leakage current. We carried out experiments to study the factors influencing CIAS absorber layer quality. The characteristics of Mo back contact layer including the interface between CIAS absorber layer and Mo layer and also the Na diffusion from SLG to CIAS absorber layer are influencing the CIAS absorber layer quality to a great extent. In spite of these factors, the amount of Se powder used for selenization process to produce CIAS layer from CIA precursor also influenced the quality of CIAS absorber layer through the formation of MoSe2 at the interface between these two layers. It was noticed that the MoSe2 formed at the interface could help the CIAS layer grow with smooth surface along the MoSe2 (100) hexagonal lattice direction. As we know that Na diffusion from SLG could help to obtain bigger CIAS grain formation, density and thickness of Mo was adjusted to control Na diffusion and finally, we achieved good quality CIAS absorber film to fabricate CIAS cell. The best cell CIAS cell fabricated showed an efficiency of 2.256% with a VOC of 0.24 V, JSC of 25.364 mA/cm2, and the F.F. of 0.371.

    Abstract IV List of figures VII List of tables XIII Chapter 1 1 Introduction 1 1.1 background 1 1.2 solar cell 3 1.3 Motivation 6 1.4 CIAS solar cell 7 1.4.1 History of CIAS solar cell 7 1.4.1 Characteristic of CIAS solar cell 10 1.5 Reference 13 Chapter 2 14 Solar cells and CIAS solar cell theory 14 2.1 Solar spectra 14 2.1.1 solar spectra and solar constant 14 2.1.2 Effects of Atmospheric Gases on Solar Radiation 18 2.2 Working principle of solar cell 21 2.2.1 The working principle of solar cell 21 2.3 Parameters of solar cell 28 2.3.1 series resistance 28 2.3.3 open circuit voltage 30 2.3.4 short circuit current 32 2.3.5 fill factor 35 2.3.6 efficiency 36 2.4 CIAS solar cell 38 2.4.1 structure of CIAS solar cell 38 2.4.2 the working theory of CIAS solar cell 39 2.4.3 CIAS absorption layer 40 2.4.4 CdS buffer layer 41 2.4.5 Al:ZnO window layer 42 2.5 Reference 43 Chapter 3 44 Experiment and Equipment 44 3.1 Experiment 44 3.1.1 process flow 44 3.1.2 Cleaning process of substrate 45 3.1.3 Back contact 47 3.1.4 CuIn1 − xAlxSe2 absorption layer 49 3.1.5 CdS buffer layer 53 3.1.6 Transparent conducting oxide 55 3.2 Equipments used for the CIAS fabrication 55 3.2.1 ultrasonic oscillator 55 3.2.2 DC sputter 58 3.2.3 RF sputter 62 3.2.4 Selenization furnace 65 3.2.5 Chemical bath deposition 66 3.3 Measurement Tools 68 3.3.1 α-step 68 3.3.2 Metal four-point probes 69 3.3.3 Secondary electron microscope 73 3.3.4 EDS 75 3.3.5 Raman measurement 77 3.3.6 X-ray diffraction 79 3.3.7 UV-VIS 82 3.3.8 Solar simulator 84 3.3.9 Quantum efficiency measurement 85 3.4 Reference 88 Chapter 4 89 Results and discussion 89 4.1 Molybdenum back contact 89 4.2 Deposition of CuInAl precursor 94 4.3 Selenzation 98 4.4 CdS buffer layer 109 4.5 Al:ZnO TCO window layer 112 4.6 CIAS solar cell fabrication 115 4.7 Improvement of CIAS layer by modifying the Mo back contact 118 4.8 Measurement of the solar cell 141 4.9 Improvement process of the CIAS solar cell 144 4.10 Reference 149 Chapter 5 150 Conclusion and future work 150 5.1 Conclusion 150 5.2 Future work 153 5.3 Reference 154

    CH.1 Reference
    [1] Global Renewable Energy AG.
    [2] KRI Report No.8:Solar cells, February 2005.
    [3] P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, W.N. Shafarman, J. Appl. 
Phys. 91 (2002) 10153.
    [4] Formation of CuIn1 − xAlxSe2 thin films studied by Raman scattering, J. Olejníček a,c,⁎, C.A. Kamler b, S.A. Darveau a, C.L. Exstrom a, L.E. Slaymaker a, A.R. Vandeventer a, N.J. Ianno b, R.J. Soukup b.
    [5] A study of CIS thin films prepared by SEL technique, Chun-Hong Chiu, Institute of Microelectronics Department of Electrical Engineering National Cheng Kung University, Thesis for Master of Science
    [6] Research of Cu(In,Al)Se2 thin film and fabrication of Cu(In.Al)Se2 solar cell Study of selenization process in the fabrication of CIAS solar cell, Chee-Ming Hsu, nthu ee.

    CH.2 Reference
    [1] RADIATION (SOLAR), Qiang Fu, University of Washington, Seattle, WA, USA
    [2] American Society for Testing and Materials (ASTM) Terrestrial Reference Spectra for Photovoltaic Performance Evaluation
    [3] An Introduction to Atmospheric Radiation, Liou KN (2002), San Diego, CA: Academic Press.
    [4] solar word website.
    [5] Cu(InGa)Se2 Solar Cells, William N. Shafarman1 and Lars Stolt2 1University of Delaware, Newark, DE, USA, 2Uppsala University, Uppsala, Sweden

    CH.3 Reference
    [1] Optimization of molybdenum thin films for electrodeposited CIGS solar cells,M. Jubault n, L. Ribeaucourt, E. Chassaing, G. Renou, D. Lincot, F. Donsanti
    [2] Raman Scattering Theory, David W. Hahn
Department of Mechanical and Aerospace Engineering University of Florida
    [3] Raman: theory and instrumentation, Kit Umbach, Dept. of MS&E, CCMR, NBTC facilities
    [4] FUNDAMENTALS OF TWO-DIMENSIONAL X-RAY DIFFRACTION (XRD2), Baoping Bob He, Uwe Preckwinkel and Kingsley L. Smith, Bruker Analytical X-ray Systems Madison, Wisconsin, USA
    [5] Oriel Instruments

    CH.4 Reference
    [1] P. M. P. Salom ́e, J. Malaquias, P. A. Fernandes, and A. F. da Cunha, Mo bilayer for thin film photovoltaics revisited.
    [2] R. Krishnan1, E.A. Payzanf, R. Kacnyzki3, U. SchOOp3, J. Brite, R. Noufi4 and T.J. Anderson1, REACTION KINETICS AND PATHWAYS OF MoSe2.
    [3] Dong Hyeop Shin, Young Min Shin, Ji Hye Kim, Byung Tae Ahn and Kyung Hoon Yoon, Control of the Preferred Orientation of Cu(In,Ga)Se2 Thin Film by the Surface Modification of Mo Film.
    [4] Prof. Dr. G. Kostorz, examiner Prof. Dr. L. Stolt, co-examiner Prof. Dr. A.N. Tiwari, co-examiner, Effects of sodium on growth and properties of Cu(In,Ga)Se2 thin films and solar cells
    [5] Ju-Heon Yoon1,2, Tae-Yeon Seong2 and Jeung-hyun Jeong1*,Effect of a Mo back contact on Na diffusion in CIGS thin film solar cells
    [6] T. Hayashi et al. / Solar Energy Materials & Solar Cells 93 (2009) 922–925

    CH.5 Reference
    [1] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, High-efficiency solar cells based on Cu(InAl)Se2 thin films, Appl. Phys. Lett. 81, 1350 (2002)
    [2] Haimbodi, M.W. ,Gourmelon, E., Paulson P.D. Birkmire, R.W Shafarman, W.N. , Cu(InAl)Se2 thin films and devices deposited by multisource evaporation, Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE
    [3] Daniel Dwyer, Ingrid Repins, Haralabos Efstathiadis, Pradeep Haldar, Selenization of co-sputtered CuInAl precursor films, Solar Energy Materials & Solar Cells 94 (2010) 598–605.
    [4] Haifan Liang, Upendra Avachat, Wei Liu, Jeroen van Duren, Minh LeCIGS, formation by high temperature selenization of metal precursors in H2Se atmosphere
    [5] Oda, Y. Ritsumeikan Global Innovation Res. Organ., Ritsumeikan Univ., Kusatsu, Japan Hamazaki, R. ; Fukamizu, S. ; Yamamoto, A. ; Minemoto, T. ; Takakura, H., Cu(In, Al)S2 thin films prepared from rapid thermal annealing of Cu-In-Al-S precursors and Cu-In-Al alloys

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE