簡易檢索 / 詳目顯示

研究生: 杜德洪
Te-Horn,Tu
論文名稱: 含銅鐵鉑奈米顆粒之合成及結構之研究
Synthesis and structure analysis of FePt nanoparticles containing Cu
指導教授: 李志浩
Chih-Hao Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 72
中文關鍵詞: 鐵鉑磁性奈米顆粒自組裝同步輻射
外文關鍵詞: FePt, iron platinm, nanoparticle, self-assembly, magnetic, synchrotron radiation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •  本實驗主要研究自組裝FePt奈米顆粒摻雜Cu後對其序化溫度的影響,由於FePt奈米顆粒其磁性在500 以上退火處理後才會顯現,因此期望添加Cu之後,能夠降低其序化溫度。
      含有Cu的FePt奈米顆粒可在含有界面活性劑的高溫苯醚溶液中,藉由還原乙醯丙酮鉑(Platinum acetylacetonate)以及乙醯丙酮銅(Copper acetylacetonate)、熱分解五羰鐵(iron carbonyl)得到。目前的實驗結果發現,添加Cu之後,FePt奈米顆粒的序化溫度降低約50-100 ,在500 相同的退火處理溫度及條件下,含有Cu的FePt奈米顆粒已呈現鐵磁性的型態,而未摻Cu的奈米顆粒仍是超順磁的狀態,而在550 退火溫度下,添加9% Cu的FePt奈米顆粒具有最大的矯頑場。經由繞射圖譜以及吸收光譜結果判斷,Cu與FePt奈米顆粒形成三元合金相,Cu可能佔據在Fe的位置。而FeCuPt三元合金較易轉變為序化的結構,因此添加Cu導致序化溫度的下降。
    序化溫度的下降,可減少FePt奈米顆粒在熱處理過程中造成的黏結以及顆粒成長,造成的自組裝結構的損失,降低FePt奈米顆粒日後在工業應用上的障礙。


    Fe Cu Pt nanoparticles were prepared by the simultaneous polyol reduction of platinum acetylacetonate and copper acetylacetonate and the thermal decomposition of iron carbonyl. The addition of copper promoted the disorder FCC structure to order structure, thereby reducing the temperature required for this transition about 50-100 . Under 500 annealing temperature and the same annealing condition, the coercivity of the Fe Cu Pt nanoparticles containing 11% copper was 243 Oe while the pure FePt nanoparticles were superparamagnetic. From the x-ray powder diffraction and x-ray absorption spectroscopy results, it was found that FePtCu ternary alloy was formed and the Fe site was replaced by Cu.

    第一章 序論 1.1 引言 …………………………………………………………… 1 1.2 研究動機與目的 ……………………………………………… 2 1.3 研究內容 ……………………………………………………… 3 第二章 基礎理論與文獻回顧 2.1磁性奈米顆粒陣列製備法簡介 ……………………………… 4 2.1.1液相成核與成長………………………………………… 5 2.1.2穩定化 …………………………………………………… 6 2.1.3 磁性奈米顆粒之合成 …………………………………… 8 2.1.4自組裝(self-assembly)………………………………… 11 2.2磁紀錄過程與磁晶異向性簡………………………………… 13 2.2.1磁紀錄過程簡介 ………………………………………… 13 2.2.2磁晶異向性簡介 ………………………………………… 14 2.3 FePt合金晶體結構…………………………………………… 16 2.3.1序化與非序化 …………………………………………… 16 2.3.2 非序化結構- 序化結構…………………………… 17 2.3.3 序化結構與磁異向性之關係………………………… 18 2.4添加第三元素對FePt CoPt薄膜序化溫度的影響 ………… 19 2.5添加第三元素對FePt奈米顆粒性質的影響………………… 21 第三章 分析方法 3.1延伸X光吸收精細結構光譜(EXAFS)………………………… 23 3.2 振動試樣磁力計(VSM)………………………………………… 31 第四章 實驗步驟與量測結果討論 4.1樣品製備 ……………………………………………………… 34 4.1.1 試藥與反應裝置 ………………………………………… 35 4.1.2 樣品製備流程 …………………………………………… 37 4.2 成份分析 ……………………………………………………… 39 4.3 超晶格結構量測 ……………………………………………… 40 4.4 穿透式電子顯微鏡影像 ……………………………………… 42 4.5 X光粉末繞射結果 …………………………………………… 45 4.5.1 添加Cu與未添加Cu樣品粉末繞射圖譜之比較 ……… 45 4.5.2 不同Cu含量之比較……………………………………… 47 4.6 矯頑場變化情形 ……………………………………………… 55 4.7 吸收光譜實驗 …………………………………………………58 4.7.1 X光延伸精細結構光譜(EXAFS) ……………………… 58 4.7.2 XANES結果 ……………………………………………… 62 第五章 結論 …………………………………………………… 67 參考文獻 ………………………………………………………… 69 附錄一:相關投稿作品…………………………………… 73

    [1] S. Sun, C.B. Murry, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989.
    [2] B.R. Acharya, E.N. Abarra, A. Inomata, I. Okamoto, Joint European Magnetism Symposium(Grenoble, France, 2001) B046.
    [3] K. Inomata, T. Sawa, S. Hashimoto, J. Appl. Phys. 64 (1988) 2537.
    [4] C.B. Murry, S. Sun, W.Gaschler, H.Doyle, T.A. Betley, C.R Kagan, IBM J. Res. Develop. 45 (2001) 47.
    [5] S. Anders, S. Sun, C.B. Murry, C.T. Rettner, M.E Best, T. Thomason, M. Albrecht, J.-U. Thiele, E.E. Fullerton, B.D. Terris, Microelec. Eng. 61-62 (2002) 569.
    [6] M. L. Plumer, J. V. Ek and D. Weller, The Physics of Ultra-High-Density Magnetic Recording(Springer, New York 2001) 249-276.
    [7] http://www.research.ibm.com/
    [8] 游信和,陳文照,曾春風,材料科學導論,高立出版社.
    [9] 廖彥發,清華大學碩士論文,2003.
    [10] 吳泰伯,許樹恩,X光繞射與材料結構分析,中國材料科學學會.
    [11] T.J. Klemmer, N. Shukla, C. Lin, X.W. Wu, E.B. Svedberg, O. Mryasov, R.W. Chantrell, and D. Weller, Appl. Phys. Lett. 81, 12 (2002) 2220.
    [12] T. Maeda, T. Kai, A. Kikitsu, T. Nagase, J. Akiyama, Appl. Phys. Lett. 80 (2002) 2147.
    [13] C.L. Platt, K.W. Wierman, E.B. Svedberg, R. van de Veerdonk, J.K. Howard, J. Appl. Phys. 92 (2002) 6104.
    [14] Y.K. Takahashi, M. Ohnuma, K. Hono, J. Magn. Magn. Mater. 246 (2002) 259-265.
    [15] O. Kitakami, Y. Shimada, K. Daimon, K. Fukamichi, Appl. Phys. Lett. 78 (2001) 1104.
    [16] C.Chen, O. Kitakami, S. Okamoto, Y. Shimada, ,Appl. Phys. Lett. 76 (2000) 3218.
    [17] C.M. Kuo, P.C. Kuo, W.C. Hsu, C.T. Li, A.C. Sun, J. Magn. Magn. Mater. 209 (2000) 100.
    [18] S.R Lee, S. Yang, Y.K. Kim, J.G. Na, Appl. Phys. Lett. 78 (2001) 4001.
    [19] M. Chen, D.E. Nikles, Nano. Lett. 2 (2002) 211.
    [20] S. Kang, J.W. Harrell, D.E. Nikles, Nano. Lett. 2 (2002) 1033.
    [21] S. Kang, Z. Jia, D.E. Nikles, J.W. Harrell, IEEE Trans. Magn. 39 (2003) 2753.
    [22] D. C. Koningsberger, R. Prins, X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS, and XANES, (1988) 53-83.
    [23] B. K. Teo, EXAFS: Basic Principles and Data Analysis, (1986) 21-101.
    [24] 王其武、劉文漢,X射線吸收精細結構及其應用,科學出版社(1994)。
    [25] 黃彥衡,國立清華大學碩士論文,2004.
    [26] 金重勳等,磁性技術手冊,台灣磁性技術學會。
    [27] http://www.research.ibm.com/resources/news.shtml
    [28] S. Sun, S. Anders, T. Thomson, J. E. E. Baglin, M. F. Toney, H. F. Hamann, C. B. Murray and B. D. Terris, J. Phys. Chem. 107 (2003) 5419.
    [29] T. Z. Huang, Y. H. Huang, T. H. Tu and C. H. Lee, J. Magn. Magn. Mater. (accepted, 2004).(附錄一)
    [30] K. Chang, H. H. Hsieh, W. F. Pong, M.–H Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Young, S. T. Lin, Phys. Rev. Lett. 82 (1999) 5377.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE