簡易檢索 / 詳目顯示

研究生: 徐子軒
Hsu, Tzu-Hsuan
論文名稱: 基於CMOS-MEMS氮化鈦製程之低電壓CMUT設計與特性探討
Design of a Low Bias Voltage CMUT Based on CMOS-MEMS TiN-C Process
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 方維倫
Fang, Wei-Leun
李尉彰
Li, Wei-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 116
中文關鍵詞: CMOS-MEMS微機電電容式超聲波換能器氮化鈦單晶片機電整合CMUT on CMOS
外文關鍵詞: CMOS-MEMS, CMUT, TiN-C, single chip integration, CMUT on CMOS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用TSMC 0.35μm 2-Poly 4-Metal CMOS-MEMS標準製程與氮化鈦(TiN-C)後製程開發微機電電容式超聲波換能器(CMUT),CMUT元件具有可相容於標準CMOS製程之單晶片整合特性,因此本研究利用CMOS製程中之BEOL層設計結構並結合TiN-C後製程以及薄膜陣列設計提升元件性能。其中TiN-C後製程藉由鋁蝕刻將平行電容板感測間隙微縮至0.4μm,有效降低元件運動阻抗,除了降低元件操作偏壓外,亦增加元件之感測靈敏度。本研究開發之CMUT on CMOS TiN-C CMUT元件,其開發重點著重在將元件與介面電路進行單晶片之機電整合,目標將每一個感測像素對應之介面電路直接布局在元件機械結構的正下方,藉此達到更緊湊的二維感測器陣列系統設計,本研究成功展示之CMUT on CMOS的元件,藉由降低雜散電容對系統的影響,得以進一步將元件操作的直流偏壓降低,在僅2.5V直流偏壓條件下,得到4.78mV/kPa元件感測靈敏度,並在探頭到元件距離60mm下測得中心頻率2MHz,6dB比例頻寬89%,期待未來元件不僅能適用於生醫造影等應用外,也可朝水中通訊定位等應用發展。


    This work utilized the TSMC 0.35μm 2-Poly 4-Metal CMOS-MEMS standard process with TiN-C post process to develop Capacitive Micromachined Ultrasonic Transducers (CMUT). The key characteristic of CMUT devices is single-chip integration with circuit. The CMUT is realized by the back-end-of-line layers while combining the TiN-C post process to minimize the sensing gap between electrodes. TiN-C post process utilizes Al etching which defines 0.4μm gap reducing the motional impedance and thus enhancing the performance. This reduces the required bias voltage and increases the sensitivity. This work emphasizes on the single chip integration between MEMS and IC. CMUT on CMOS design was achieved by placing the corresponding interface circuit of each sensing CMUT pixel under its MEMS structure to simplify the routings while lowering the parasitic capacitance effect. We successfully demonstrated a CMUT on CMOS device that reduced the DC bias voltage to 2.5V while having a reception sensitivity of 4.78mV/kPa. Under an immersion depth of 60mm, the device was characterized having a center frequency of 2MHz with a 6dB bandwidth of approx. 89%. We expect that in the future the device can be applied to ultrasound imaging applications while exploring the possibility of immersion data communication applications.

    摘要---i 目錄---iii 圖目錄---vi 表目錄---xii 第一章 前言---1 1-1 研究動機與背景---1 1-2 文獻回顧---4 1-3 文章架構---9 第二章 元件設計分析---12 2-1 CMOS-MEMS電容式超聲波傳感器---12 2-1-1 CMOS-MEMS技術---13 2-1-2 電容式感測與壓電式感測之比較---14 2-1-3 電容式感測機制之原理---16 2-2 薄膜共振器之原理與分析---19 2-2-1 等效電路系統---19 2-2-2 薄膜式共振器之理論分析---21 2-3 CMUT感測器設計---25 2-3-1 設計概念---25 2-3-2 元件運動阻抗最佳化之設計---27 2-3-3 CMOS金屬薄膜釋放後製程比較---29 2-3-4 CMUT on CMOS元件設計---31 2-3-5 CMUT on CMOS元件理論分析---36 2-3-6 CMUT on CMOS元件設計模擬---40 第三章 CMUT介面電路設計---42 3-1 CMUT on CMOS介面電路設計---42 3-2 CMUT on CMOS 介面電路性能驗證---48 3-2-1 CMUT介面電路量測架設---48 3-2-2 CMUT介面電路量測結果---49 3-2-3 系統雜訊量測---51 第四章 後製程步驟與結果---53 4-1 TiN-C 後蝕刻製程測試---54 4-2 TiN-C CMOS-MEMS CMUT後製程---56 4-3 元件封裝後製程---62 4-4 後製程測試CMUT元件後製程結果---64 4-5 CMUT on CMOS元件後製程結果---69 4-5-1 CMUT on CMOS元件光學顯微鏡影像圖---69 4-5-2 CMUT on CMOS元件電子顯微鏡影像圖---75 第五章 TiN-C CMUT量測與討論---78 5-1 CMUT on CMOS元件電信號量測---78 5-1-1 CMUT on CMOS元件電信號量測架設---79 5-1-2 CMUT on CMOS元件電信號量測結果---80 5-2 CMUT on CMOS元件超聲波接收性能量測---82 5-2-1 CMUT on CMOS元件超聲波接收實驗量測架設---82 5-2-2 CMUT on CMOS元件超聲波接收實驗量測結果---85 5-3 CMUT on CMOS元件製程結果分析---88 第六章 結語---93 附錄 測試用CMUT性能量測結果---96 A-1 測試用CMUT機械訊號量測---96 A-1-1測試用CMUT元件電信號量測架設 96 A-1-2 測試用CMUT元件電信號量測結果 97 A-1-3 測試用CMUT元件光學量測頻率響應結果 99 A-2 測試用CMUT水中超聲波接收量測 100 A-2-1 水中超聲波接收量測架設 100 A-2-2 測試用CMUT超聲波接收性能 103 參考文獻 108

    [1]K. E. Petersen, “Silicon as a mechanical material,” Proceedings of the IEEE, vol. 70, pp. 420-457, 1982.
    [2]J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998.
    [3]M. Madou, Fundamentals of Microfabrication, CRC Press, New York, 1997.
    [4]W. Fang, S.-S. Li, C.-L. Cheng, C.-I. Chang, W.-C. Chen, Y.-C. Liu, M.-H. Tsai, C. Sun, “CMOS MEMS: A key technology towards the “More than Moore” era,” Technical Digest of the 17th International Conference on Solid-State Sensors & Actuators (Transducers’13), pp. 2513-2518, June 2013.
    [5]G. K. Fedder, R. T. Howe, T.-J. K. Liu, and E. P. Quevy, “Technologies for cofabricating MEMS and electronics,” Proceedings of the IEEE, vol. 96, pp. 306–322, 2008.
    [6]A. C. Fischer, F. Forsberg, M. Lapisa, S. J. Bleiker, G. Stemme, N. Roxhed, and F. Niklaus, “Integrating MEMS and ICs,” Journal of the Microsystems & Nanoengineering, vol. 1, 2015.
    [7]H. A. C. Tilmans, W. D. Raedt, and E. Beyne, “MEMS for wireless communications: ‘from RF-MEMS components to RF-MEMS-SiP’,” Journal of Micromechanics and Microengineering, vol. 13, 2003.
    [8]ITRS (International Technology Roadmap for Semiconductors), 2011 Edition. The International Technology Roadmap, 2011; http://www.itrs.net/reports.html
    [9]Y. -C. Liu, M.-H. Tsai, S.-S. Li, and W. Fang, “A fully-differential, multiplex-sensing interface circuit monolithically integrated with tri-axis pure oxide capacitive CMOS-MEMS accelerometers,” Technical Digest of the 17th International Conference on Solid-State Sensors & Actuators (Transducers’13), pp. 610-613, June 2013.
    [10]T-W. Shen, K.-C. Chang, C.-M. Sun and W. Fang, 2019, “Performance enhance of CMOS-MEMS thermoelectric infrared sensor by using sensing material and structure design,” Journal of Micromechanics and Microengineering, vol. 29, January 2019.
    [11]K.-J. Tseng, Y.-H. Huang, M.-H. Li, and S.-S. Li, “Design of a 3-axis MEMS gyroscope based on a fully differential operation,” Proceedings of the Asia-Pacific Conference of Transducers and Micro-Nano Technology (APCOT), June 2018.
    [12]C. -Y. Liu, M.-H. Li, Ranjith HG, C.-Y. Chen, and S.-S. Li, “A 1 MHz 4 ppm CMOS-MEMS oscillator with built-in self-test and sub-mW ovenization power,” Technical Digest of the 2016 IEEE International Electron Devices Meeting (IEDM’16), pp. 26.7.1-26.7.4, December 2016.
    [13]T. -Y. Liu, C.-C. Chu, M.-H. Li, C.-Y. Liu, C.-Y. Lo, and S.-S. Li, “CMOS-MEMS thermal-piezoresistive oscillators with high transduction efficiency for mass sensing applications,” Technical Digest of the 19th International Conference on Solid-State Sensors & Actuators (Transducers’17), pp. 452-455, June 2017.
    [14]V. Pedio, G. De Pasquale, A. Somà, L. Rufer, and S. Basrour, “Modeling of structural-fluidic interactions for the design of digital MEMS speakers in hearing aids,” Proceedings of the 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), June 2017.
    [15]K. -M. Shen, N. M. Sabbavarapu, C.-Y. Fu, J.-T. Jan, J.-R. Wang, S.-C. Hung, and G.-B. Lee, “An integrated microfluidic system for rapid detection and multiple subtyping of influenza A viruses by using glycan-coated magnetic beads and RT-PCR,” Lab on a chip, vol. 19, pp. 1277-1286, 2019.
    [16]K. Kim, S. Moon, J. Lee, Y. Park, S.-J. Lee, and J.-H. Lee, J. Moon, Y.-G. Kim, “Feasibility study of the OCT probe using MEMS optical scanner array for high speed inspection,” Proceedings of the 2017 International Conference on Optical MEMS and Nanophotonics (OMN), vol. 1, Aug. 2017.
    [17]C. Tekes, J. Zahorian, T. Xu, M. W. Rashid, S. Satir, G. Gurun, M. Karaman, J. Hasler, and F. L. Degertekina, “Volumetric imaging using single chip integrated CMUT-on-CMOS IVUS array,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, August 2012.
    [18]Angioplasty.Org; http://www.ptca.org/ivus/ivus.html
    [19]K. T. Dussik, “Uber die moglichkeit hochfrequente mechanische schwingungen als diagnostisches hilfsmittel zu verwerten”, Z Neurol Psychiat, vol. 174, no. 1, pp. 153-168, Dec. 1942.
    [20]I. Donald, J. Macvicar, and T. G. Brown, “Investigation of abdominal masses by pulsed ultrasound,” The Lancet, vol. 271, no. 7032, pp. 1188-1195, June 1958.
    [21]D. G. McDonald and G. R. Leopold, “Ultrasound B-scanning in the differentiation of Baker’s cyst and thrombophlebitis,” British Journal of Radiology, vol. 45, no. 538, pp. 729-732, October 1972.
    [22]K. Brenner, A. S. Ergun, K. Firouzi., M. F. Rasmussen, Q. Stedman and B. T. Khuri–Yakub, “Advances in capacitive micromachined ultrasonic transducers,” Micromachines 2019, vol. 10, no. 2, February 2019.
    [23]B. Bayram, M. Kupnik, G. G. Yaralioglu, Ö. Oralkan, D. Lin, X. Zhuang,A. S. Ergun, A. F. Sarioglu, S. H. Wong, and B. T. Khuri-Yakub, “Characterization of cross-coupling in capacitive micromachined ultrasonic transducers,” Proceedings of the IEEE Ultrasonics Symposium, vol. 1, October 2005.
    [24]B. Bayram, G. G. Yaralioglu, M. Kupnik, and B. T. Khuri-Yakub, “Acoustic crosstalk reduction method for CMUT arrays,” Proceedings of the IEEE Ultrasonics Symposium, vol. 1, October 2006.
    [25]H.-S. Yoon, C. Chang, J. H. Jang, A. Bhuyan, J. W. Choe, A Nikoozadeh, R D. Watkins, D. N. Stephens, K. B. Pauly, and B. T. Khuri-Yakub, “Ex vivo HIFU experiments using a 32 × 32-element CMUT array,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 12, pp. 2150 - 2158, December 2016.
    [26]S. Olcum , F. Y. Yamaner , A. Bozkurt , H. Köymen ,and A. Atalar, “CMUT array element in deep-collapse mode,” Proceedings of the IEEE Ultrasonics Symposium, vol. 1, October 2011.
    [27]S. Satir, G. Gurun, J. Zahorian, M. Karaman, P. Hasler, L. Degertekin, “An annular CMUT array beamforming system for high-frequency side looking IVUS imaging,” Proceedings of the IEEE Ultrasonics Symposium, vol. 1, October 2010.
    [28]P. K. Tang, P. H. Wang, M. L. Li and Michael S.-C. Lu, “Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process,” Journal of the Micromechanics and Microengineering, vol. 21, no. 2, pp. 2475-2483, February 2011.
    [29]Y.-S. Tien, P.-C. Ku, F.-Y. Lin, P.-C. Li, L.-H. Lu, P.-L. Kuo, and W.-C. Tian, “A low voltage CMOS-based capacitive micromachined ultrasonic sensors development,” Proceedings of the 2012 IEEE Sensors Conference, vol. 1, pp. 1810-1813. October 2012.
    [30]W. -C. Chen, W. Fang, S.-S. Li, “VHF CMOS-MEMS oxide resonators with Q > 10,000,” Proceedings of the 2012 IEEE International Frequency Control Symposium, vol. 1, May 2012.
    [31]W. -C. Chen, M.-H. Li, Y.-C. Liu, W. Fang, S.-S. Li, “A Fully Differential CMOS–MEMS DETF Oxide Resonator With Q>4800 and Positive TCF,” IEEE Electron Device Letters, vol. 33, no. 5, pp. 721 -723, May 2012.
    [32]C.-M. Sun, C. Wang, M.-H. Tsai, H.-S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS-MEMS post process,” Journal of Micromechanics and Microengineering, vol. 19, no. 1, December 2008.
    [33]C.-I. Chang, M.-H. Tsai, Y.-C. Liu, C.-M. Sun, W. Fang, “Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces,” Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), vol. 1, January 2013.
    [34]P. Osterberg, H. Yie, X. Cai, J. White, and S. Senturia, “Self-consistent simulation and modeling of electrostatically deformed diagrams,” Proceedings of the 1994 IEEE Micro Electro Mechanical Systems, pp. 28-32, January 1994.
    [35]D. Maier-Schneider, J. Maibach, and E. Obermeier “A New Analytical Solution for the Load-Deflection of Square Membranes,” Journal of Microelectromechanical Systems, vol. 4, no. 4, Pages 238-241, December 1995.
    [36]R. Knechtel, “Low temperature wafer bonding for MEMS processes and 3D integration,”, Proceedings of the 2012 3rd IEEE International Workshop on Low Temperature Bonding for 3D Integration, vol. 1, May 2012.
    [37]Y. Temiz, M. Zervas, C. Guiducci, Y. Leblebici, “Die-level TSV fabrication platform for CMOS-MEMS integration,” Proceedings of the 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, vol. 1, June 2011.
    [38]台大醫院皮膚科皮膚高頻超音波特別門診負責醫師王修含醫師;http://www.skin168.net/2013/04/medical-ultrasound.html?m=1
    [39]M. Thränhardt, P.-C. Eccardt, H. Mooshofer, P. Hauptmann, L. Degertekin, “A resonant CMUT sensor for fluid applications,” Proceedings of the SENSORS 2009, pp. 878- 883, October 2009.
    [40]C.-B. Doody, X.-Y. Cheng, C.-A. Rich, D.-F. Lemmerhirt, and R.-D. White, “Modeling and characterization of CMOS-fabricated capacitive micromachined ultrasound transducer,” Journal of the Microelectromechanical Systems, vol. 20, no. 1, pp.104-118, February 2011.
    [41]M.-H. Li, C.-Y. Chen, C.-S. Li, C.-H. Chin, and S.-S. Li, “A monolithic CMOS-MEMS oscillator based on an ultra-low-power ovenized micromechanical resonator,” Journal of the Microelectromechanical Systems, vol. 24, no. 2 pp. 360-372, April 2015.
    [42]C.-H. Chin, C.-S. Li, M.-H. Li, S.-S. Li, “A CMOS-MEMS resonant gate field effect transistor,” Technical Digest of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), vol. 1, June 2013.
    [43]M.-H. Li, C.-Y. Chen, S.-S. Li,” A reliable CMOS-MEMS platform for titanium nitride composite (TiN-C) resonant transducers with enhanced electrostatic transduction and frequency stability,” Technical Digest of the 2015 IEEE International Electron Devices Meeting (IEDM), vol. 1, pp. 489-490, December 2015.
    [44]T. -H. Hsu, C.-Y. Chen, C.-Y. Liu, M.-H. Li, and S.-S. Li, "A 200-nm-gap titanium nitride composite CMOS-MEMS CMUT for biomedical ultrasounds," Proceedings of the 2018 IEEE Frequency Control Symposium (IFCS), pp. 468-470, May 2018.
    [45]Y. -J. Liao, "Design and Characterization of CMOS-MEMS Dual-Electrode Capacitive Micromachined Ultrasonic Transducers," Master thesis, National Tsing Hua University, 2014.
    [46]Microchemicals GmbH, “Aluminium Etching,”; https://www.microchemicals.eu/.
    [47]F. Levassort, L.-P. Tran-Huu-Hue, P. Marechal, E. Ringgaard, M. Lethiecq,” Characterisation of thin layers of parylene at high frequency using PZT thick film resonators,” Journal of the European Ceramic Society, vol. 25, no. 12, Pages 2985-2989, 2005.
    [48]NDT resource center; https://www.nde-ed.org/index_flash.htm.
    [49]I. O. Wygant, X. Zhuang, D. T. Yeh, O. Oralkan, A. S. Ergun, M. Karaman, and B. T. Khuri-Yakub, "Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging," IEEE Transactions on Ultrasonic, Ferroelectric, Frequency Control, vol. 55, no. 2, pp. 327-342, Feb. 2008.
    [50]K. Chen, H.-S. Lee, A. P. Chandrakasan, and C. G. Sodini, "Ultrasonic Imaging Transceiver Design for CMUT: A Three-Level 30-Vpp Pulse-Shaping Pulser With Improved Efficiency and a Noise-Optimized Receiver," IEEE Journal of the Solid-State Circuits, vol. 48, no. 11, pp. 2734 - 2745, Oct. 2013.
    [51]K. Chen, H.-S. Lee, and C. G. Sodini, "A Column-Row-Parallel ASIC Architecture for 3-D Portable Medical Ultrasonic Imaging," IEEE Journal of the Solid-State Circuits, vol. 51, no. 3, pp. 738-751, 2016.
    [52]M. Sautto, A. S. Savoia, F. Quaglia, G. Caliano, and A. Mazzanti, "A Comparative Analysis of CMUT Receiving Architectures for the Design Optimization of Integrated Transceiver Front Ends," IEEE Transactions on Ultrasonic, Ferroelectric, Frequency Control, vol. 64, no. 5, pp. 826-838, 2017.
    [53]C. Chen, Z. Chen, Z. Chang, and M. A. P. Pertijs, "A compact 0.135-mW/channel LNA array for piezoelectric ultrasound transducers," Proceedings of the European Solid-State Circuits Conference (ESSCIRC), pp. 404 - 407, 2015.
    [54]X. Jin, O. Oralkan, F. L. Degertekin, and B. T. Khuri-Yakub “Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 3, pp. 750 - 760, May 2001.

    QR CODE