研究生: |
蔡宜璇 Tsai, Yi Hsuan |
---|---|
論文名稱: |
多細緻度優化之分組方法於機台與搬運車之同步排程問題 An Improved Grouping Method for Multiple Fidelity Optimization in Simultaneous Scheduling of Machines and Vehicles |
指導教授: |
林則孟
James T. Lin |
口試委員: |
吳建瑋
張國浩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 多細緻度模型 、MO2TOS 、Ordinal Transformation改良方法 、Global K-means |
外文關鍵詞: | Multi-fidelity, MO2TOS, Improved Ordinal Transformation, Global K-means |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在不同領域中對於模型的建置因考量特性多寡而存在不同細緻度的模型。然而不同細緻度模型各有其優缺點,當細緻度越高時進行系統評估時雖然能夠較準確,卻會需要耗費較長的建置時間及成本;而低細緻度模型雖可能存在變異但其績效趨勢可能會反映部份高細緻度模型之績效趨勢。因此本研究引用MO2TOS(Multi-fidelity Optimization with Ordinal Transformation and Optimal Sampling)架構並以彈性製造系統(Flexible Manufacturing System)的同步進行機台與車輛排程為對象,透過考量區域控制以及替代機台的特性,設置本研究之高、低細緻度模型。
在MO2TOS架構中,如何依據低細緻度模型績效進行分組將會是運用MO2TOS進行後續抽樣之重點。由於MO2TOS採用等距方式進行方案分組,然而高細緻度模型績效中相似解之個數並不一定相等,使用等距分組易使組間差異不明顯,進而使資源分配不佳。本研究提出Ordinal Transformation改良方法搭配Global K-means分組方法,以持續抽樣所得到模型相關資訊搭配Global K-means分組方法更新分組。本研究進一步驗證在變換本研究所設定之Layout與JobSet的彈性製造系統環境下之高與低相關程度之多細緻度模型下,導入Ordinal Transformation改良方法可節省高細緻度模型抽樣次數的使用,尤其是相關程度低的模型透過不斷更新高細緻度模型預測值後重新分組再抽樣能夠顯著節省高細緻度模型抽樣次數。
In different field of research there are many different fidelity models exist which considerd different system features. However, different fidelity modles have its pros and cons. When there is high fidelity model, we can evaluate system more accurately, but it will cause time-consuming and will lead to higher cost in building the model. On the other hand, lower fidelity model may exist bias, but it’s better for faster evaluation and the performance can provide partial of trend between low and high fidelity models. As the result, when facing multi-fidelity models, it is important to enhance the efficiency of optimization.
In this research, we exploite Multi-fidelity Optimization with Ordinal Transformation and Optimal Sampling (MO2TOS) to solve the simultaneous scheduling problem of machines and automated guided vehicles (AGVs) in flexible manufacturing system (FMS). Based on the problem, we considering the zone-control and alternative machine features to setup the multi-fidelity model.
In MO2TOS, grouping method is one of main factors which may affect the quality of optimization significantly. In this research, Improved Ordinal Transformation is proposed and for use with Global K-means to update the group after every iteration of MO2TOS. Futher more, we verify this method in different FMS layout and jobset. From the experimental results, this method can significantly allocate resource effectively and save simulation resources for higher and lower correlation models.
[1] 林則孟(2001)。系統模擬理論與應用。台北市:滄海書局。
[2] 陳宏銘(2015)。多細緻度模型最佳化於彈性製造系統之探討(未出版之碩士論文)。國立清華大學工業工程與工程管理研究所,新竹市。
[3] 張祐翔(2013)。應用模擬最佳化於FMS之機台與車輛同步排程(未出版之碩士論文)。國立清華大學工業工程與工程管理研究所,新竹市。
[4] 許雅寧(2014)。粒子群聚演算法於FMS之機台與車輛同步排程(未出版之碩士論文)。國立清華大學工業工程與工程管理研究所,新竹市。
[5] 黃辰皓(2016)。應用MO2TOS於FMS同步機台與車輛排程問題(未出版之碩士論文)。國立清華大學工業工程與工程管理研究所,新竹市。
[6] 黎士賢(1999)。網路式移動區域控制無人搬運車系統(未出版之碩士論文)。國立中央大學工業管理研究所,桃園市。
[7] Abdelmaguid, T. F., Nassef, A. O., Kamal, B. A., & Hassan, M. F. (2004). A hybrid GA/heuristic approach to the simultaneous scheduling of machines and automated guided vehicles. International journal of production research, 42(2), 267-281.
[8] Aggarwal, Charu C., and Chandan K. Reddy. (2013). Data clustering: algorithms and applications. CRC Press
[9] Alessi, S. M. (2000). Simulation design for training and assessment. Aircrew training and assessment, 197-222.
[10] Anwar, M. F., & Nagi, R. (1998). Integrated scheduling of material handling and manufacturing activities for just-in-time production of complex assemblies.International Journal of Production Research, 36(3), 653-681.
[11] Arthur, D., & Vassilvitskii, S. (2007, January). k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp.1027-1035). Society for Industrial and Applied Mathematics.
[12] Balabanov, V., & Venter, G. (2004, August). Multi-fidelity optimization with high-fidelity analysis and low-fidelity gradients. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 4459.
[13] Bilge, Ü., & Ulusoy, G. (1995). A time window approach to simultaneous scheduling of machines and material handling system in an FMS. Operations Research, 43(6), 1058-1070.
[14] Browne, J., Dubois, D., Rathmill, K., & Stecke, K.E., (1984). Classification of flexible manufacturing systems, The FMS magazine, 2, 114-117
[15] Butler, K. W., Veltre, D. E., & Brady, D. (2009). Implementation of active learning pedagogy comparing low-fidelity simulation versus high-fidelity simulation in pediatric nursing education. Clinical Simulation in Nursing, 5(4), 129-136.
[16] Buzacott, J. A., & Mandelbaum, M. (1985). Flexibility and productivity in manufacturing systems. Proceedings of the annual IIE Conference ,404-413.
[17] Chan, F. T. S., Chaube, A., Mohan, V., Arora, V., & Tiwari, M. K. (2010). Operation allocation in automated manufacturing system using GA-based approach with multifidelity models. Robotics and Computer-Integrated Manufacturing, 26(5), 526-534.
[18] Chen, C. H. (2010). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific.
[19] Coyette, A., Kieffer, S., & Vanderdonckt, J. (2007, September). Multi-fidelity prototyping of user interfaces. In IFIP Conference on Human-Computer Interaction, Springer Berlin Heidelberg.
[20] Dahl, Y., Alsos, O. A., & Svanæs, D. (2010). Fidelity considerations for simulation-based usability assessments of mobile ICT for hospitals. Intl. Journal of Human–Computer Interaction, 26(5), 445-476.
[21] Davis, P. K., & Bigelow, J. H. (1998). Experiments in multiresolution modeling (MRM) (No. RAND/MR-1004-DARPA). RAND CORP SANTA MONICA CA.
[22] Dieckmann, P., Gaba, D., & Rall, M. (2007). Deepening the theoretical foundations of patient simulation as social practice. Simulation in Healthcare,2(3), 183-193.
[23] Fanti, M. P. (2002). Event-based controller to avoid deadlock and collisions in zone-control AGVS. International Journal of Production Research, 40(6), 1453-1478.
[24] Forrester, A. I., Sóbester, A., & Keane, A. J. (2007, December). Multi-fidelity optimization via surrogate modelling. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 463(288), 3251-3269.
[25] Gano, S. E., Renaud, J. E., & Sanders, B. (2005). Hybrid variable fidelity optimization by using a kriging-based scaling function. Aiaa Journal, 43(11), 2422-2433.
[26] Gnanavel Babu, A., Jerald, J., Noorul Haq, A., Muthu Luxmi, V., & Vigneswaralu, T. P. (2010). Scheduling of machines and automated guided vehicles in FMS using differential evolution. International Journal of Production Research, 48(16), 4683-4699.
[27] Groover, M. P. (2007). Automation, production systems, and computer-integrated manufacturing. Prentice Hall Press.
[28] Han, M. H., & McGinnis, L. F. (1989). Control of material handling transporter in automated manufacturing. IIE transactions, 21(2), 184-190.
[29] Hao, W., Shaoping, W., & Tomovic, M. M. (2010). Modified sequential Kriging optimization for multidisciplinary complex product simulation. Chinese Journal of Aeronautics, 23(5), 616-622.
[30] Harmonosky, C. M. (1995, December). Simulation-based real-time scheduling: review of recent developments. In Proceedings of the 27th conference on Winter simulation (pp. 220-225). IEEE Computer Society.
[31] Ho, Y. C., & Wang, C. R. (1997). A Shifting-Zone Control Strategy for Vehicle-Collision Prevention in a Multiple-Vehicle AGV System. Proceedings of the 14th International Conference on Production Research, OSAKA, Japan.
[32] Huang, E., Xu, J., Zhang, S., & Chen, C. H. (2015). Multi-fidelity Model Integration for Engineering Design. Procedia Computer Science, 44, 336-344.
[33] Huang, D., Allen, T. T., Notz, W. I., & Miller, R. A. (2006). Sequential kriging optimization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization, 32(5), 369-382.
[34] Jerald, J., Asokan, P., Saravanan, R., & Rani, A. D. C. (2006). Simultaneous scheduling of parts and automated guided vehicles in an FMS environment using adaptive genetic algorithm. The International Journal of Advanced Manufacturing Technology, 29(5-6), 584-589.
[35] Joseph, O. A., Sridharan, R. (2011). Evaluation of routing flexibility of a flexible manufacturing system using simulation modelling and analysis. The International Journal of Advanced Manufacturing Technology, 56, 273-289
[36] Kanazaki, M., Takagi, H., & Makino, Y. (2013). Mixed-fidelity efficient global optimization applied to design of supersonic wing. Procedia Engineering, 67, 85-99.
[37] Karabtik, S., & Sabuncuolu, I. (1993, May). A beam search based algorithm for scheduling machines and AGVs in an FMS. In Proceedings of the Second Industrial Engineering Research Conference (pp. 308-312). Los Angeles.
[38] Kim, C. W., & Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional AGV routeing. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 29(12), 2377-2391.
[39] Koziel, S., & Leifsson, L. Þ. (2013, June). Shape-Preserving Response Prediction for Engineering Design Optimization. In ICCS (pp. 879-888).
[40] Kumar, M. S., Janardhana, R., & Rao, C. S. P. (2011). Simultaneous scheduling of machines and vehicles in an FMS environment with alternative routing. The International Journal of Advanced Manufacturing Technology, 53(1-4), 339-351.
[41] Lacomme, P., Moukrim, A., & Tchernev*, N. (2005). Simultaneous job input sequencing and vehicle dispatching in a single-vehicle automated guided vehicle system: a heuristic branch-and-bound approach coupled with a discrete events simulation model. International Journal of Production Research, 43(9), 1911-1942.
[42] Lee, C. C., & Lin, J. T. (1995). Deadlock prediction and avoidance based on Petri nets for zone-control automated guided vehicle systems. International journal of production research, 33(12), 3249-3265.
[43] Leifsson, L., Koziel, S., & Bekasiewicz, A. (2014). Fast Low-fidelity Wing Aerodynamics Model for Surrogate-based Shape Optimization. Procedia Computer Science, 29, 811-820.
[44] Li, W., Li, M., Chen, C. S., & Liu, X. (2015). Compactly supported radial basis functions for solving certain high order partial differential equations in 3D.Engineering Analysis with Boundary Elements, 55, 2-9.
[45] Likas, Aristidis, Nikos Vlassis, and Jakob J. Verbeek. (2003).The global k-means clustering algorithm. Pattern Recognition, 36(2), 451-461.
[46] Madan, M., Son, Y. J., Cho, H., & Kulvatunyou, B. (2005). Determination of efficient simulation model fidelity for flexible manufacturing systems.International Journal of Computer Integrated Manufacturing, 18(2-3), 236-250.
[47] March, A., & Willcox, K. (2012). Provably convergent multifidelity optimization algorithm not requiring high-fidelity derivatives. AIAA journal, 50(5), 1079-1089.
[48] Mascarenhas, M. B. (1981). Planning for flexibility. Long Range Planning, 14(5), 78-82.
[49] Nasr, N., & Elsayed, E. A. (1990). Job shop scheduling with alternative machines. The International Journal of Production Research, 28(9), 1595-1609.
[50] Nageswararao, M., Narayanarao, K., Ranagajanardhana G. (2014). Simultaneous Scheduling of Machines and AGVs in Flexible Manufacturing System with Minimization of Tardiness Criterion Procedia Materials Science, 5, 1492-1501
[51] Nishi, T., Yuichiro H., and Ignacio E. G. (2011). A bilevel decomposition algorithm for simultaneous production scheduling and conflict-free routing for automated guided vehicles, Computers & Operations Research, 38, 876-888
[52] Ombuki, B. M., & Ventresca, M. (2004). Local search genetic algorithms for the job shop scheduling problem. Applied Intelligence, 21(1), 99-109.
[53] Ono, I., Yamamura, M., & Kobayashi, S. (1996, May). A genetic algorithm for job-shop scheduling problems using job-based order crossover. Proceedings of IEEE International Conference on (pp. 547-552). IEEE.
[54] Paige, J. B., & Morin, K. H. (2013). Simulation fidelity and cueing: a systematic review of the literature. Clinical Simulation in Nursing, 9(11), 481-489.
[55] Pandit, R., & Palekar, U. S. (1993). Job shop scheduling with explicit material handling considerations. Working paper, Iowa State University, Ames, Iowa.
[56] Park, S. C., Byoung K. C., & Namkyu P. (2011). Virtual FMS architecture for FMS prototyping, AIP Conference Proceedings. IOP Institute of Physics Publishing LTD, 628-637
[57] P. S. Bradley. , & U. M. Fayyad. (1998). Refining initial points for k-means clustering, In Proceedings of the Fifteenth International Conference on Machine Learning, Vol. 66.
[58] Raman, N. (1986). Simultaneous scheduling of machines and material handling devices in automated manufacturing.Proc. of the Second ORSA/TIMS Conference on Flexible Manufacturing Systems: Operations Research Models and Applications.
[59] Reddy, B. S. P., & Rao, C. S. P. (2006). A hybrid multi-objective GA for simultaneous scheduling of machines and AGVs in FMS. The International Journal of Advanced Manufacturing Technology, 31(5-6), 602-613.
[60] Rehmann, A. J., Mitman, R. D., Reynolds, M. C. (1995). A Handbook of Flight Simulation Fidelity Requirements for Human Factors Research. CREW SYSTEM ERGONOMICS INFORMATION ANALYSIS CENTER WRIGHT-PATTERSON AFB OH.
[61] Robinson, T. D., Eldred, M. S., Willcox, K. E., Haimes, R., (2008). Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping, AIAA Journal, 46, 2814-2822
[62] Sawik, T. (1996). A multilevel machine and vehicle scheduling in a flexible manufacturing system. Mathematical and Computer Modelling, 23(7), 45-57.
[63] Satishkumar, M. V. (2011). Simultaneous scheduling of machines and Agvs using evolutionary optimization algorithms.
[64] Stecke, K. E. (1985). Design, planning, scheduling, and control problems of flexible manufacturing systems. Annals of Operations Research, 3(1), 1-12.
[65] Subbaiah, K. V., Rao, M. N., Rao, K. N. (2009). Scheduling of AGVs and machines in FMS with makespan criteria using sheep flock heredity algorithm.International Journal of Physical Sciences, 4(2), 139-148.
[66] Sun, G., Li, G., Zhou, S., Xu, W., Yang, X., Li, Q. (2011). Multi-fidelity optimization for sheet metal forming process, Structural and Multidisciplinary Optimization, 44, 111-124
[67] S. Z. Selim, M. A. Ismail. (1984). K-means-type algorithms: A generalized convergence theorem and characterization of local optimality, IEEE Transactions on Pattern Analysis and Machine intelligence, 81–87
[68] Ulusoy, G., & Bilge, Ü. (1993). Simultaneous scheduling of machines and automated guided vehicles. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 31(12), 2857-2873.
[69] Ulusoy, G., Sivrikaya-Şerifoǧlu, F., & Bilge, Ü. (1997). A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles. Computers & Operations Research, 24(4), 335-351.
[70] Vis, I. F. (2006). Survey of research in the design and control of automated guided vehicle systems. European Journal of Operational Research, 170(3), 677-709.
[71] Wang, F. K., & Lin, J. T. (2004). Performance evaluation of an automated material handling system for a wafer fab. Robotics and Computer-Integrated Manufacturing, 20(2), 91-100.
[72] Wilhelm, W. E., & Shin, H. M. (1985). Effectiveness of alternate operations in a flexible manufacturing system. International Journal of Production Research, 23(1), 65-79.
[73] Xu, J., Zhang, S., Huang, E., Chen, C. H., Lee, L. H., & Celik, N. (2014, August). An ordinal transformation framework for multi-fidelity simulation optimization. In Automation Science and Engineering (CASE), 2014 IEEE International Conference on (pp. 385-390). IEEE.
[74] Xu, J., Zhang, S., Huang, E., Chen, C. H., Lee, L. H., & Celik, N. (2016). MO2TOS: Multi-fidelity Optimization with Ordinal Transformation and Optimal Sampling. Asia-Pacific Journal of Operational Research.
[75] Yeh, M. S., & Yeh, W. C. (1998). Deadlock prediction and avoidance for zone-control AGVS. International Journal of Production Research, 36(10), 2879-2889.