研究生: |
葉耀昇 Yeh , Yao-Sheng |
---|---|
論文名稱: |
架構在相似度下的LR型模糊數之聚類分析及其應用 A Similarity-Based clustering algorithm for LR-type fuzzy numbers and its applications |
指導教授: |
洪文良
Hung , Wen-Liang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | SCM演算法 、聚類分析 、強韌性 、LR型模糊數 |
外文關鍵詞: | SCM, clustering analysis, robust, LR-type fuzzy numbers |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,我們將廣泛的使用SCM演算法來達到我們的要求。SCM演算法是一種聚類分析的演算法,其最主要的功能是分辨出原始資料可能被分成幾群。而SCM演算法在此聚類分析演算法中,可以說是具有強韌性(Robust)的演算法,而此即是本文章使用該演算法最主要的原因。另外,LR型糢糊數也算是一種類型的模糊數資料型態的代表,在使用此種表示法可補充在原始資料所欠缺不足的資訊。至此,以SCM演算法和LR型模糊數為一改良的方法,而發展出新的演算式,更可以得到令人意想不到的結果。在文章的一開始,將以SCM演算法與LR型模糊數做結合,更以實驗的結果顯示出新式SCM演算法的特性,在實驗中也將顯示出新的演算法在評估資料中佔有優勢。
In this paper, we use SCM to obtain our requirements. The SCM is one clustering analysis method, its most main function is to distinguish the original information to divide into several clusters. In the clustering analysis, the SCM is robust. This is the main reason we use the SCM in this article. Moreover, the LR-type fuzzy numbers is one type of fuzzy numbers, which using the method of clustering analysis to supplement that is short of the insufficient information in the original data. Hence, take the SCM and the LR-type fuzzy numbers as an improvement method, and develops this becoming a new method. It may obtain the unexpected result. In the article from the very beginning, we will make the union by the SCM and the LR-type fuzzy numbers, and we will test the result to show the new style of the characteristic in SCM, and we also will demonstrate the new method to show the superiority in estimating data in the experiment.
[1]. K.L. Wu and M.S. Yang, Mean shift-based clustering, Pattern Recognition 40 (2007) 3035 – 3052.
[2]. M.S. Yang and K.L. Wu, A Similarity-Based Robust clustering Method, IEEE Trans. Pattern analysis and Machine Intelligence 26 (2004) 434 – 448.
[3]. P. D’Urso and P. Giordani, A weighted fuzzy c-means clustering model for fuzzy data, Computational Statistics & Data Analysis 50 (2006) 1496 – 1523.
[4]. W.L. Hung and M.S. Yang, Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation, Fuzzy Sets and Systems 150 (2005) 561 – 577.
[5]. L.A. Zadeh, Fuzzy sets, Inform. Control 8 (1965) 338–353.