簡易檢索 / 詳目顯示

研究生: 李皙哲
Lee, Hsi-Che
論文名稱: The Myopathy-Causing Mutation in αB-crystallin Alters Its Interaction with Desmin Intermediate Filament
造成肌病變的αB-水晶體突變蛋白改變與肌間線蛋白形成的中間絲的交互作用
指導教授: 彭明德
Perng, Ming-Der
口試委員: 張壯榮
李文權
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 76
中文關鍵詞: 肌間線蛋白與肌間線蛋白有關的肌病變中間型絲小分子熱休克蛋白磷酸化αB-水晶體蛋白突變
外文關鍵詞: Desmin, Desmin-related myopathy, Intermediate filament, Small heat shock protein, Phosphorylation, αB-crystallin, Mutation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小型熱休克蛋白:αB水晶體蛋白的突變是造成多種疾病的原因,例如:擴張型心肌病變、肌間線蛋白肌病變,以及先天性的白內障。其中,肌間線蛋白肌病變最早被發現其致病因素直接和肌間線蛋白的突變有關,此突變蛋白不僅改變了本身蛋白質的結構更牽連與它有密切結合關係的蛋白質,進而造成電子密度高的顆粒纖維狀物質的形成。此疾病與中間絲蛋白的細胞骨架瓦解有絕對的相關,由此可知小型熱休克蛋白對於中間絲蛋白具有重要的生理意義。小型熱休克蛋白被認為扮演一個伴隨蛋白的角色,可以和不正常折疊的蛋白質結合並避免形成不正常的蛋白質結構,進而讓細胞遠離逆境壓力。一個位於αB水晶體蛋白上的第154個胺基酸上的誤義突變:由甘胺酸突變成絲胺酸,最近被檢驗出此突變和晚發性的末梢液泡肌病變有關,而與一些典型的心肌病變或是呼吸缺陷還有白內障這些疾病無關。此一突變位於哺乳動物高度保留性的αB水晶體蛋白基因序列中,並更早就被發現於一個罹患單純心肌症的病人檢體中。這項研究藉由生物化學以及分子與細胞生物的方式去探討G154S-αB水晶體蛋白對於肌間線蛋白的交互作用的能力是否因為突變而造成改變。共沉降實驗分析顯示出G154S-αB水晶體蛋白增加了與肌間線蛋白結合的能力。利用穿透式電子顯微鏡觀察此兩種蛋白質的交互作用,也的確出現了G154S-αB水晶體蛋白的顆粒蛋白攀附在肌間線蛋白所形成的中間絲纖維上的現象。而在短暫型DNA轉染細胞系統的研究項目中,實驗數據顯示G154S-αB水晶體蛋白並不會因為突變了而影響它在人類乳癌細胞、老鼠肌原母細胞、以及倉鼠腎細胞裡的分佈,但是在C2C12的細胞比起正常的水晶體蛋白會降低了些微的溶解度。R120G-水晶體蛋白被指出同樣也會造成肌間線蛋白肌病變,藉此可對照R120G-水晶體蛋白在短暫型DNA 轉染細胞系統所引起的,明顯地促進與肌間線蛋白的結合能力、蛋白質溶解度的改變,以及導致形成細胞內不正常蛋白堆積物。另一方面,在R120G-水晶體蛋白和G154S-水晶體蛋白的第59號的絲胺酸上都出現了特殊地磷酸化的現象。綜合以上的研究結果,G154S-水晶體蛋白的致病機制可能與導致肌間線蛋白肌病變的R120G-水晶體蛋白不盡相同。


    Mutations in the small heat shock protein (sHSP) αB-crystallins cause a range of human diseases including dilated cardiomyopathy (DCM), desmin-related myopathy (DRM) and congenital cataracts. DRM was the first discovered associated with desmin mutations which can affect themselves and closely interacted proteins that typically tending to incomplete assembly of desmin and formation of electro-dense granulofilamentous materials. These diseases involve the disruption of the intermediate filament (IF) cytoskeleton and thus identified intermediate filaments as important physiological targets of sHSPs. Recently, a missense mutation Gly154Ser (G154S) in αB-crystallin was reported to be associated with a late-onset distal vacuolar myopathy without cardiac or respiratory dysfunction and cataracts. This mutation affects a highly conserved amino acid residue among the αB-crystallin in mammals and has been identified earlier in patients with isolated cardiomyopathy. In this study, the effects of G154S mutation on αB-crystallin’s ability to interact with desmin IFs was investigated in details using a combination of biochemical, molecular and cell biological approaches. Cosedimentation assay showed that the G154S mutation increased the binding of αB-crystallin to assembled desmin IFs. Transmission electron microscopy confirmed that the G154S αB-crystallin particles decorated the assembled desmin filaments. Transient transfection studies revealed that the expression of G154S αB-crystallin did not affect its distribution but accomplishment of slightly decreased of solubility in C2C12 cell fraction study compared to the wild type αB-crystallin. This is in contrast to the R120G mutation reported in desmin-related myopathy, where this mutation affected the solubility of αB-crystallin and promoted its interaction with desmin filament leading to intracellular aggregates formation in transiently transfected cells. When transfected into a range of cell lines, both R120G and G154S αB-crystallin mutants, but not the wild type protein, increased the phosphorylation of αB-crystallin at Ser59 site. Taken together, these data suggest that the G154S mutation may be involved in the pathogenesis of myopathy through a mechanism that is different from the R120G mutation found in DRM.

    Contents I Abstract V 中文摘要 VI 致謝 VII Abbreviation VIII Chapter 1:Introduction 9 1.1 Intermediate filaments 9 1.2 Desmin and DRM 3 1.3 The small heat shock proteins and αB-crystallin 5 1.4 Interaction of αB-crystallin with cytoskeletal proteins 6 1.5 Actin-based microfilaments and microtubules 6 1.6 Intermediate filaments 7 1.7 Human diseases associated with αB-crystallin mutations 9 1.8 Molecular pathogenesis of DRM 11 1.9 In vitro studies 11 1.10 Animal models 12 1.11 Eliminating the aggregates 13 Chapter 2:Material and Methods 15 2.1 Construction of expression plasmids 15 2.2 Construction of G154S αB-crystallin by site directed mutagenesis 15 2.3 Preparation of competent cells 17 2.4 Expression and purification of recombinant αB-crystallin 17 2.5 Purification of G154S αB-crystallin by column chromatography 18 2.6 Determination of protein concentration 19 2.7 Intermediate filament assembly in vitro 19 2.8 Cosedimentation assay 20 2.9 Transmission electron microscopy 20 2.10 Cell culture and transient transfection 21 2.11 Generation of stable cell lines 21 2.12 Immunofluorescence microscopy 22 2.13 Cellular fractionation 23 2.14 Preparation of cytoskeletal fractions 24 2.15 Immunoprecipitation 24 2.16 Immunoblotting 25 2.17 Silver staining 26 Chapter 3:Results 27 3.1 The effect of G154S αB-crystallin on the interaction with desmin filaments in vitro. 27 3.1.1 Expression and purification of recombinant G154S αB-crystallin. 27 3.1.2 Interaction of αB-crystallin and desmin filaments in vitro. 28 3.1.3 Visualization of the interaction between αB-crystallin and desmin by electron microscopy. 29 3.2 The effect of αB-crystallin mutation on the IF networks in cultured cells determining. 30 3.2.1 Expression level and solubility property of αB-crystallin 31 3.2.2 Expression of αB-crystallin in C2C12 cells. 32 3.3 Generation of stable cell lines. 36 3.3.1 Screening of BHK21 cell lines expressing αB-crystallin. 37 3.3.2 Screening of C2C12 cell lines expressing αB-crystallin. 38 Chapter 4:Disscussion 40 4.1 Interaction between desmin and αB-crystallin. 40 4.2 Establishment of stable cell line. 41 4.3 The event which transfected αB-crystallin into cell model related to late onset disease of DRM. 41 Appendix 43 Appendix 1. IFs are classified into five major families. 43 Appendix 2. Model of IF assembly 44 Appendix 3. Draw of desmin mutations 45 Figures 46 Figure 1-1. Electrophoretic analysis of expression and purification of G154S αB-crystallin. 46 Figure 1-2. Purification of G154S αB-crystallin by anion exchange chromatography. 47 Figure 1-3. Purification of G154S αB-crystallin by gel filtration chromatography. 48 Figure 1-4. Protein concentration determination. 49 Cosedimentation assay explained 50 Figure 1-5.Cosedimentation of WT αB-crystallin with wild-type desmin in vitro. 51 Figure 1-6. G154S αB-crystallin cosediment with wild-type desmin filament. 52 Figure 1-7. Visulization of WT and G154S αB-crystallin binding to desmin intermediate filaments in vitro by electron microscopy. 53 Figure 2-1. Formation of cytoplasmic aggregates in BHK21 cells expressing mutant αB-crystallin. 54 Figure 2-2. Analysis of wild type and mutant αB-crystallin in transiently transfected BHK21 cells by immunoblotting. 55 Figure 2-3. Effect of C2C12 cells transiently transfected with either wild type αB-crystallin (A), or R120G αB-crystallin (B), or G154S αB-crystallin (C) after 48 hours. 56 Figure 2-4. Distribution of WT and mutant αB-crystallin in relation to the endogenous desmin IF networks. 57 Figure 2-5. Wild-type and mutant αB-crystallin were transiently transfected into C2C12 cells. 58 Figure 2-6. Immunoblotting analysis of wild type and mutant αB-crystallin expressed in MCF7 cells. 59 Figure 2-7. Effect of αB-crystallin mutations upon mitochondrial distribution in C2C12 cells. 60 Figure 2-8. The problems and improvements in co-immunoprecipitation. 61 Figure 2-9. Co-immunoprecipitation of NT, WT, R120G, and G154S αB-crystallin in C2C12 cells. 62 Figure 3-1. Killing curve of BHK21 cells treated with G418 and hygromycin. 63 Figure 3-2. Stable clones were selected from single cell in each 96 well petri dish. 64 Figure 3-3. Expression level of αB-crystallin in selected BHK21 stable clones. 65 Figure 3-4. Cytoskeletal preparation was analyzed by coomassie blue staining and silver staining. 66 Figure 3-5. Expression level of R120G αB-crystallin stable clones. 67 Figure 3-6. R120G αB-crystallin was examined by immunofluorecent microscopy. 68 Figure 3-7. C2C12 stable clone selection of cells expressed transfected αB-crystallin. 69 References 70

    [1] D.A. Parry, P.M. Steinert, Intermediate filaments: molecular architecture, assembly, dynamics and polymorphism, Q Rev Biophys 32 (1999) 99-187.
    [2] H. Herrmann, U. Aebi, Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds, Annu Rev Biochem 73 (2004) 749-789.
    [3] A. Zimek, R. Stick, K. Weber, Genes coding for intermediate filament proteins: common features and unexpected differences in the genomes of humans and the teleost fish Fugu rubripes, J Cell Sci 116 (2003) 2295-2302.
    [4] M. Hesse, T.M. Magin, K. Weber, Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18, J Cell Sci 114 (2001) 2569-2575.
    [5] D.A. Parry, Microdissection of the sequence and structure of intermediate filament chains, Adv Protein Chem 70 (2005) 113-142.
    [6] D.A. Parry, S.V. Strelkov, P. Burkhard, U. Aebi, H. Herrmann, Towards a molecular description of intermediate filament structure and assembly, Exp Cell Res 313 (2007) 2204-2216.
    [7] H. Herrmann, M. Haner, M. Brettel, N.O. Ku, U. Aebi, Characterization of distinct early assembly units of different intermediate filament proteins, J Mol Biol 286 (1999) 1403-1420.
    [8] V. Prahlad, M. Yoon, R.D. Moir, R.D. Vale, R.D. Goldman, Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks, J Cell Biol 143 (1998) 159-170.
    [9] M. Yoon, R.D. Moir, V. Prahlad, R.D. Goldman, Motile properties of vimentin intermediate filament networks in living cells, J Cell Biol 143 (1998) 147-157.
    [10] K.L. Vikstrom, G.G. Borisy, R.D. Goldman, Dynamic aspects of intermediate filament networks in BHK-21 cells, Proc Natl Acad Sci U S A 86 (1989) 549-553.
    [11] M.B. Omary, P.A. Coulombe, W.H. McLean, Intermediate filament proteins and their associated diseases, N Engl J Med 351 (2004) 2087-2100.
    [12] L.M. Godsel, R.P. Hobbs, K.J. Green, Intermediate filament assembly: dynamics to disease, Trends Cell Biol 18 (2008) 28-37.
    [13] P.A. Coulombe, M.L. Kerns, E. Fuchs, Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility, J Clin Invest 119 (2009) 1784-1793.
    [14] Z. Li, P. Marchand, J. Humbert, C. Babinet, D. Paulin, Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice, Development 117 (1993) 947-959.
    [15] D.O. Furst, M. Osborn, K. Weber, Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly, J Cell Biol 109 (1989) 517-527.
    [16] G. Schaart, C. Viebahn, W. Langmann, F. Ramaekers, Desmin and titin expression in early postimplantation mouse embryos, Development 107 (1989) 585-596.
    [17] D.L. Gard, E. Lazarides, The synthesis and distribution of desmin and vimentin during myogenesis in vitro, Cell 19 (1980) 263-275.
    [18] P.M. Hemken, R.M. Bellin, S.W. Sernett, B. Becker, T.W. Huiatt, R.M. Robson, Molecular characteristics of the novel intermediate filament protein paranemin. Sequence reveals EAP-300 and IFAPa-400 are highly homologous to paranemin, J Biol Chem 272 (1997) 32489-32499.
    [19] S.C. Schweitzer, M.W. Klymkowsky, R.M. Bellin, R.M. Robson, Y. Capetanaki, R.M. Evans, Paranemin and the organization of desmin filament networks, J Cell Sci 114 (2001) 1079-1089.
    [20] M.G. Price, E. Lazarides, Expression of intermediate filament-associated proteins paranemin and synemin in chicken development, J Cell Biol 97 (1983) 1860-1874.
    [21] E. Poon, E.V. Howman, S.E. Newey, K.E. Davies, Association of syncoilin and desmin: linking intermediate filament proteins to the dystrophin-associated protein complex, J Biol Chem 277 (2002) 3433-3439.
    [22] Y. Mizuno, T.G. Thompson, J.R. Guyon, H.G. Lidov, M. Brosius, M. Imamura, E. Ozawa, S.C. Watkins, L.M. Kunkel, Desmuslin, an intermediate filament protein that interacts with alpha -dystrobrevin and desmin, Proc Natl Acad Sci U S A 98 (2001) 6156-6161.
    [23] T. Hijikata, T. Murakami, M. Imamura, N. Fujimaki, H. Ishikawa, Plectin is a linker of intermediate filaments to Z-discs in skeletal muscle fibers, J Cell Sci 112 ( Pt 6) (1999) 867-876.
    [24] R. Schroder, I. Warlo, H. Herrmann, P.F. van der Ven, C. Klasen, I. Blumcke, R.R. Mundegar, D.O. Furst, H.H. Goebel, T.M. Magin, Immunogold EM reveals a close association of plectin and the desmin cytoskeleton in human skeletal muscle, Eur J Cell Biol 78 (1999) 288-295.
    [25] M.G. Price, Molecular analysis of intermediate filament cytoskeleton--a putative load-bearing structure, Am J Physiol 246 (1984) H566-572.
    [26] E. Viegas-Pequignot, Z.L. Li, B. Dutrillaux, F. Apiou, D. Paulin, Assignment of human desmin gene to band 2q35 by nonradioactive in situ hybridization, Hum Genet 83 (1989) 33-36.
    [27] Z.L. Li, A. Lilienbaum, G. Butler-Browne, D. Paulin, Human desmin-coding gene: complete nucleotide sequence, characterization and regulation of expression during myogenesis and development, Gene 78 (1989) 243-254.
    [28] K. Weber, N. Geisler, Intermediate filaments: structural conservation and divergence, Ann N Y Acad Sci 455 (1985) 126-143.
    [29] S.V. Strelkov, H. Herrmann, U. Aebi, Molecular architecture of intermediate filaments, Bioessays 25 (2003) 243-251.
    [30] L.G. Goldfarb, M.C. Dalakas, Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease, J Clin Invest 119 (2009) 1806-1813.
    [31] R.P. Taylor, I.J. Benjamin, Small heat shock proteins: a new classification scheme in mammals, J Mol Cell Cardiol 38 (2005) 433-444.
    [32] R.A. Dubin, A.H. Ally, S. Chung, J. Piatigorsky, Human alphaB-crystallin gene and preferential promoter function in lens, Genomics 7 (1990) 594-601.
    [33] J. Horwitz, The function of alpha-crystallin in vision, Semin Cell Dev Biol 11 (2000) 53-60.
    [34] W.C. Boelens, Y. Croes, W.W. de Jong, Interaction between alphaB-crystallin and the human 20S proteasomal subunit C8/alpha7, Biochim Biophys Acta 1544 (2001) 311-319.
    [35] J. den Engelsman, V. Keijsers, W.W. de Jong, W.C. Boelens, The small heat-shock protein alpha αB-crystallin promotes FBX4-dependent ubiquitination, J Biol Chem 278 (2003) 4699-4704.
    [36] A.P. Arrigo, The cellular "networking" of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis, Adv Exp Med Biol 594 (2007) 14-26.
    [37] M.C. Kamradt, F. Chen, V.L. Cryns, The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation, J Biol Chem 276 (2001) 16059-16063.
    [38] Y.W. Mao, J.P. Liu, H. Xiang, D.W. Li, Human alphaA- and alphaB-crystallins bind to Bax and Bcl-X(S) to sequester their translocation during staurosporine-induced apoptosis, Cell Death Differ 11 (2004) 512-526.
    [39] D.W. Li, J.P. Liu, Y.W. Mao, H. Xiang, J. Wang, W.Y. Ma, Z. Dong, H.M. Pike, R.E. Brown, J.C. Reed, Calcium-activated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by alphaB-crystallin through inhibition of RAS activation, Mol Biol Cell 16 (2005) 4437-4453.
    [40] K. Wang, A. Spector, alpha-crystallin stabilizes actin filaments and prevents cytochalasin-induced depolymerization in a phosphorylation-dependent manner, Eur J Biochem 242 (1996) 56-66.
    [41] M. Wieske, R. Benndorf, J. Behlke, R. Dolling, G. Grelle, H. Bielka, G. Lutsch, Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization, Eur J Biochem 268 (2001) 2083-2090.
    [42] B.N. Singh, K.S. Rao, T. Ramakrishna, N. Rangaraj, M. Rao Ch, Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo, J Mol Biol 366 (2007) 756-767.
    [43] T. Iwaki, A. Iwaki, J. Tateishi, J.E. Goldman, Sense and antisense modification of glial alphaB-crystallin production results in alterations of stress fiber formation and thermoresistance, J Cell Biol 125 (1994) 1385-1393.
    [44] J.G. Ghosh, S.A. Houck, J.I. Clark, Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments, Int J Biochem Cell Biol 39 (2007) 1804-1815.
    [45] Y. Fujita, E. Ohto, E. Katayama, Y. Atomi, alphaB-Crystallin-coated MAP microtubule resists nocodazole and calcium-induced disassembly, J Cell Sci 117 (2004) 1719-1726.
    [46] E. Ohto-Fujita, Y. Fujita, Y. Atomi, Analysis of the alphaB-crystallin domain responsible for inhibiting tubulin aggregation, Cell Stress Chaperones 12 (2007) 163-171.
    [47] J.G. Ghosh, S.A. Houck, J.I. Clark, Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly, PLoS One 2 (2007) e498.
    [48] I.D. Nicholl, R.A. Quinlan, Chaperone activity of alpha-crystallins modulates intermediate filament assembly, EMBO J 13 (1994) 945-953.
    [49] P.J. Muchowski, M.M. Valdez, J.I. Clark, AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress, Invest Ophthalmol Vis Sci 40 (1999) 951-958.
    [50] K. Djabali, B. de Nechaud, F. Landon, M.M. Portier, AlphaB-crystallin interacts with intermediate filaments in response to stress, J Cell Sci 110 ( Pt 21) (1997) 2759-2769.
    [51] M.D. Perng, L. Cairns, I.P. van den, A. Prescott, A.M. Hutcheson, R.A. Quinlan, Intermediate filament interactions can be altered by HSP27 and alphaB-crystallin, J Cell Sci 112 ( Pt 13) (1999) 2099-2112.
    [52] T. Wisniewski, J.E. Goldman, Alpha B-crystallin is associated with intermediate filaments in astrocytoma cells, Neurochem Res 23 (1998) 385-392.
    [53] M.D. Perng, S.F. Wen, I.P. van den, A.R. Prescott, R.A. Quinlan, Desmin aggregate formation by R120G alphaB-crystallin is caused by altered filament interactions and is dependent upon network status in cells, Mol Biol Cell 15 (2004) 2335-2346.
    [54] M.D. Perng, P.J. Muchowski, I.P. van Den, G.J. Wu, A.M. Hutcheson, J.I. Clark, R.A. Quinlan, The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro, J Biol Chem 274 (1999) 33235-33243.
    [55] F. Bennardini, A. Wrzosek, M. Chiesi, Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments, Circ Res 71 (1992) 288-294.
    [56] P. Vicart, A. Caron, P. Guicheney, Z. Li, M.C. Prevost, A. Faure, D. Chateau, F. Chapon, F. Tome, J.M. Dupret, D. Paulin, M. Fardeau, A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy, Nat Genet 20 (1998) 92-95.
    [57] L.G. Goldfarb, P. Vicart, H.H. Goebel, M.C. Dalakas, Desmin myopathy, Brain 127 (2004) 723-734.
    [58] J. Lowe, A. Blanchard, K. Morrell, G. Lennox, L. Reynolds, M. Billett, M. Landon, R.J. Mayer, Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease, J Pathol 155 (1988) 9-15.
    [59] M.A. Pappolla, Lewy bodies of Parkinson's disease. Immune electron microscopic demonstration of neurofilament antigens in constituent filaments, Arch Pathol Lab Med 110 (1986) 1160-1163.
    [60] R.A. Quinlan, M. Brenner, J.E. Goldman, A. Messing, GFAP and its role in Alexander disease, Exp Cell Res 313 (2007) 2077-2087.
    [61] K. Zatloukal, S.W. French, C. Stumptner, P. Strnad, M. Harada, D.M. Toivola, M. Cadrin, M.B. Omary, From Mallory to Mallory-Denk bodies: what, how and why?, Exp Cell Res 313 (2007) 2033-2049.
    [62] R. Quinlan, P. Van Den Ijssel, Fatal attraction: when chaperone turns harlot, Nat Med 5 (1999) 25-26.
    [63] L.G. Goldfarb, K.Y. Park, L. Cervenakova, S. Gorokhova, H.S. Lee, O. Vasconcelos, J.W. Nagle, C. Semino-Mora, K. Sivakumar, M.C. Dalakas, Missense mutations in desmin associated with familial cardiac and skeletal myopathy, Nat Genet 19 (1998) 402-403.
    [64] M. Fardeau, P. Vicart, A. Caron, D. Chateau, M. Chevallay, H. Collin, F. Chapon, D. Duboc, B. Eymard, F.M. Tome, J.M. Dupret, D. Paulin, P. Guicheney, [Familial myopathy with desmin storage seen as a granulo-filamentar, electron-dense material with mutation of the alphaB-cristallin gene], Rev Neurol (Paris) 156 (2000) 497-504.
    [65] M.P. Bova, O. Yaron, Q. Huang, L. Ding, D.A. Haley, P.L. Stewart, J. Horwitz, Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function, Proc Natl Acad Sci U S A 96 (1999) 6137-6142.
    [66] A.T. Chavez Zobel, A. Loranger, N. Marceau, J.R. Theriault, H. Lambert, J. Landry, Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alphaB-crystallin mutant, Hum Mol Genet 12 (2003) 1609-1620.
    [67] L. Fu, J.J. Liang, Alteration of protein-protein interactions of congenital cataract crystallin mutants, Invest Ophthalmol Vis Sci 44 (2003) 1155-1159.
    [68] X. Wang, H. Osinska, R. Klevitsky, A.M. Gerdes, M. Nieman, J. Lorenz, T. Hewett, J. Robbins, Expression of R120G-alphaB-crystallin causes aberrant desmin and alphaB-crystallin aggregation and cardiomyopathy in mice, Circ Res 89 (2001) 84-91.
    [69] V. Berry, P. Francis, M.A. Reddy, D. Collyer, E. Vithana, I. MacKay, G. Dawson, A.H. Carey, A. Moore, S.S. Bhattacharya, R.A. Quinlan, Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract in humans, Am J Hum Genet 69 (2001) 1141-1145.
    [70] D. Selcen, A.G. Engel, Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations, Ann Neurol 54 (2003) 804-810.
    [71] N. Inagaki, T. Hayashi, T. Arimura, Y. Koga, M. Takahashi, H. Shibata, K. Teraoka, T. Chikamori, A. Yamashina, A. Kimura, Alpha B-crystallin mutation in dilated cardiomyopathy, Biochem Biophys Res Commun 342 (2006) 379-386.
    [72] P. Reilich, B. Schoser, N. Schramm, S. Krause, J. Schessl, W. Kress, J. Muller-Hocker, M.C. Walter, H. Lochmuller, The p.G154S mutation of the alpha-B crystallin gene (CRYAB) causes late-onset distal myopathy, Neuromuscul Disord 20 (2010) 255-259.
    [73] H. Bar, N. Mucke, A. Kostareva, G. Sjoberg, U. Aebi, H. Herrmann, Severe muscle disease-causing desmin mutations interfere with in vitro filament assembly at distinct stages, Proc Natl Acad Sci U S A 102 (2005) 15099-15104.
    [74] H. Bar, A. Kostareva, G. Sjoberg, T. Sejersen, H.A. Katus, H. Herrmann, Forced expression of desmin and desmin mutants in cultured cells: impact of myopathic missense mutations in the central coiled-coil domain on network formation, Exp Cell Res 312 (2006) 1554-1565.
    [75] H. Bar, N. Mucke, P. Ringler, S.A. Muller, L. Kreplak, H.A. Katus, U. Aebi, H. Herrmann, Impact of disease mutations on the desmin filament assembly process, J Mol Biol 360 (2006) 1031-1042.
    [76] H. Bar, N. Mucke, H.A. Katus, U. Aebi, H. Herrmann, Assembly defects of desmin disease mutants carrying deletions in the alpha-helical rod domain are rescued by wild type protein, J Struct Biol 158 (2007) 107-115.
    [77] H. Bar, B. Goudeau, S. Walde, M. Casteras-Simon, N. Mucke, A. Shatunov, Y.P. Goldberg, C. Clarke, J.L. Holton, B. Eymard, H.A. Katus, M. Fardeau, L. Goldfarb, P. Vicart, H. Herrmann, Conspicuous involvement of desmin tail mutations in diverse cardiac and skeletal myopathies, Hum Mutat 28 (2007) 374-386.
    [78] Y. Capetanaki, R.J. Bloch, A. Kouloumenta, M. Mavroidis, S. Psarras, Muscle intermediate filaments and their links to membranes and membranous organelles, Exp Cell Res 313 (2007) 2063-2076.
    [79] X. Wang, H. Osinska, G.W. Dorn, 2nd, M. Nieman, J.N. Lorenz, A.M. Gerdes, S. Witt, T. Kimball, J. Gulick, J. Robbins, Mouse model of desmin-related cardiomyopathy, Circulation 103 (2001) 2402-2407.
    [80] A. Kostareva, G. Sjoberg, J. Bruton, S.J. Zhang, J. Balogh, A. Gudkova, B. Hedberg, L. Edstrom, H. Westerblad, T. Sejersen, Mice expressing L345P mutant desmin exhibit morphological and functional changes of skeletal and cardiac mitochondria, J Muscle Res Cell Motil 29 (2008) 25-36.
    [81] A. Maloyan, A. Sanbe, H. Osinska, M. Westfall, D. Robinson, K. Imahashi, E. Murphy, J. Robbins, Mitochondrial dysfunction and apoptosis underlie the pathogenic process in alpha-B-crystallin desmin-related cardiomyopathy, Circulation 112 (2005) 3451-3461.
    [82] N.S. Rajasekaran, P. Connell, E.S. Christians, L.J. Yan, R.P. Taylor, A. Orosz, X.Q. Zhang, T.J. Stevenson, R.M. Peshock, J.A. Leopold, W.H. Barry, J. Loscalzo, S.J. Odelberg, I.J. Benjamin, Human alpha B-crystallin mutation causes oxido-reductive stress and protein aggregation cardiomyopathy in mice, Cell 130 (2007) 427-439.
    [83] U.P. Andley, P.D. Hamilton, N. Ravi, C.C. Weihl, A knock-in mouse model for the R120G mutation of alphaB-crystallin recapitulates human hereditary myopathy and cataracts, PLoS One 6 (2011) e17671.
    [84] M. Li, M.C. Dalakas, Abnormal desmin protein in myofibrillar myopathies caused by desmin gene mutations, Ann Neurol 49 (2001) 532-536.
    [85] R.R. Kopito, Aggresomes, inclusion bodies and protein aggregation, Trends Cell Biol 10 (2000) 524-530.
    [86] A. Sanbe, H. Osinska, J.E. Saffitz, C.G. Glabe, R. Kayed, A. Maloyan, J. Robbins, Desmin-related cardiomyopathy in transgenic mice: a cardiac amyloidosis, Proc Natl Acad Sci U S A 101 (2004) 10132-10136.
    [87] H. Ecroyd, J.A. Carver, Crystallin proteins and amyloid fibrils, Cell Mol Life Sci 66 (2009) 62-81.
    [88] J.D. Lunemann, J. Schmidt, D. Schmid, K. Barthel, A. Wrede, M.C. Dalakas, C. Munz, Beta-amyloid is a substrate of autophagy in sporadic inclusion body myositis, Ann Neurol 61 (2007) 476-483.
    [89] P. Tannous, H. Zhu, J.L. Johnstone, J.M. Shelton, N.S. Rajasekaran, I.J. Benjamin, L. Nguyen, R.D. Gerard, B. Levine, B.A. Rothermel, J.A. Hill, Autophagy is an adaptive response in desmin-related cardiomyopathy, Proc Natl Acad Sci U S A 105 (2008) 9745-9750.
    [90] A. Maloyan, J. Robbins, Autophagy in desmin-related cardiomyopathy: Thoughts at the halfway point, Autophagy 6 (2010).
    [91] J.S. Pattison, J. Robbins, Autophagy and proteotoxicity in cardiomyocytes, Autophagy 7 (2011).
    [92] S. Sarkar, D.C. Rubinsztein, Small molecule enhancers of autophagy for neurodegenerative diseases, Mol Biosyst 4 (2008) 895-901.
    [93] S. Sarkar, D.C. Rubinsztein, Huntington's disease: degradation of mutant huntingtin by autophagy, FEBS J 275 (2008) 4263-4270.
    [94] The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27,Am J Hum Genet(2006)79(2):197-213.
    [95] Intermediate filament protein structure determination.,Methods Cell Biol (2004) 78:25-43.
    [96] A set of anti-crystallin monoclonal antibodies for detecting lens specificities: beta-crystallin as a specific marker for detecting lentoidogenesis in cultures of chicken lens epithelial cells, Jpn J Ophthalmol (1993) 37(4):355-68.
    [97] M.D. Perng, A. Sandilands, J. Kuszak, R. Dahm, A. Wegener, A.R. Prescott, R.A. Quinlan, The intermediate filament systems in the eye lens, Methods Cell Biol 78 (2004) 597-624.
    [98] S. Simon, M. Michiel, F. Skouri-Panet, J.P. Lechaire, P. Vicart, A. Tardieu, Residue R120 is essential for the quaternary structure and functional integrity of human alphaB-crystallin, Biochemistry 46 (2007) 9605-9614.
    [99] S. Meehan, T.P. Knowles, A.J. Baldwin, J.F. Smith, A.M. Squires, P. Clements, T.M. Treweek, H. Ecroyd, G.G. Tartaglia, M. Vendruscolo, C.E. Macphee, C.M. Dobson, J.A. Carver, Characterisation of amyloid fibril formation by small heat-shock chaperone proteins human alphaA-, alphaB- and R120G alphaB-crystallins, J Mol Biol 372 (2007) 470-484.
    [100] L.V. Kumar, T. Ramakrishna, C.M. Rao, Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins, J Biol Chem 274 (1999) 24137-24141.
    [101] W.W. de Jong, A. Zweers, M. Versteeg, E.C. Nuy-Terwindt, Primary structures of the alpha-crystallin A chains of twenty-eight mammalian species, chicken and frog, Eur J Biochem 141 (1984) 131-140.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE