研究生: |
胡志帆 |
---|---|
論文名稱: |
整合奈米碳管高分子複合薄膜於微機電製程並應用於微型感測元件之研究 Integration of CNTs-Polymer Composites with MEMS Micromachining for Micro Sensing Devices Application |
指導教授: | 方維倫 |
口試委員: |
鄭裕庭
謝哲偉 楊燿州 蘇旺申 徐文光 傅建中 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 奈米碳管 、微機電加工技術 、高分子複合薄膜 |
外文關鍵詞: | Carbon nanotubes (CNTs), MEMS micromachining, polymer composites |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管擁有許多特別的材料性質,可以應用在不同的研究領域。為了發揮奈米碳管獨特的特性,必須能夠將之整合於微元件上,以連接後端訊號截取界面,應用於高科技電子產品。本研究將奈米碳管與高分子材料結合,並整合於微機電製程技術,開發批量化且可重複製作的奈米碳管微型感測元件,透過製程整合平台的開發,可將奈米等級的材料製作於微米等級的元件上,並完成許多奈米碳管在電性上的感測。本研究將奈米碳管高分子複合薄膜整合於三項關鍵的微機電製程技術:(1)整合奈米碳管於高分子微加工技術,以撓性奈米碳管觸覺感測器為載具;(2)整合奈米碳管於矽基體型微加工技術,以奈米碳管壓力、加速度及溫度感測器為載具;(3)整合三維奈米碳管於矽基面型微加工技術,以三維奈米碳管掃瞄探針及奈米碳管纖毛感測器為載具。藉由整合奈米碳管於微機電加工技術,可建立關鍵製程模組及彈性製程平台,並藉以促成奈米碳管元件積體化,達到量產為目標,發揮更有效率及價值的應用。
Carbon nanotubes (CNTs) have a lot of special material properties in application of various fields. In order to reveal these unique properties, it is necessary to integrate CNTs with micro-devices, which can implement the signal interface connection for high-tech electronic products application. This research integrates CNTs and polymer materials with MEMS fabrication processes to manufacture batch and reproducible CNTs micro sensing devices. It is possible to fabricate the material with nano scale on the sensing device with micro scale by developing the integrated manufacturing platform. Moreover, more electrical properties of CNTs can be characterizied. The present research integrates CNTs-polymer composites into three important MEMS fabrication processes: (1) integrating CNTs with polymer micromachining and taking the flexible CNTs-based tactile sensor as the development carrier; (2) integrating CNTs with silicon-based bulk micromachining, and taking the CNT-based pressure sensor, g-sensor, and temperature sensor as the development carrier; (3) integrating 3D CNTs stacks with silicon-based surface micromachining, and taking the CNT-based 3D sensing probe and hair cell sensor as the development carrier. Core fabrication modules and flexible manufacturing platform will be built up to increase the density of CNTs micro-devices. In summary, the presented integrated manufacturing plateform is aiming to bring CNTs micro-devices into mass production, and to spread out more efficient properties and higher value applications.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol 354, pp. 56-58, 1991.
[2] J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Applied Physics A: Materials Science & Processing, vol. 69, pp. 255-260, 1999.
[3] Q. Li, C. Liu, X. Wang, and S. Fan, “Measuring the thermal conductivity of individual carbon nanotubes by the Raman shift method,” Nanotechnology, vol. 20, pp. 145702, 2009.
[4] Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Physical Review Letters, vol. 84, pp. 2941-2944, 2000.
[5] B. Q. Wei, R. Vajtai, and P. M. Ajayan, “Reliability and current carrying capacity of carbon nanotubes,” Applied Physics Letters, vol. 79, pp. 1172-1174, 2001.
[6] S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, vol. 393, pp. 49-52, 1998.
[7] T. Gabay, M. Ben-David, I. Kalifa, R. Sorkin, Z. R. Abrams, E. Ben-Jacob, and Y. Hanein, “Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays,” Nanotechnology, vol. 18, pp. 035201, 2007.
[8] T. Kawano, H. C. Chiamori, M. Suter, Q. Zhou, B. D. Sosnowchik, and L. Lin, “An electrothermal carbon nanotube gas sensor,” Nano Letters, vol. 7, pp. 3686-3690, 2007.
[9] G. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, “Fabrication and electrical characteristics of carbon nanotube field emission microcathodes with an integrated gate electrode,” Nanotechnology, vol. 13, pp. 1-4, 2002.
[10] I.-M. Choi and S.-Y. Woo, “Development of low pressure sensor based on carbon nanotube field emission,” Metrologia, vol. 43, pp. 84-88, 2006.
[11] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of the IEEE, vol. 86, pp. 1552-1574, 1998.
[12] N. Yazdi and K. Najafi, “An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process,” Journal of Microelectromechanical Systems, vol. 9, pp. 544-550, 2000.
[13] S. E. Alper, I. E. Ocak, and T. Akin, “Ultrathick and high-aspect-ratio nickel microgyroscope using EFAB multilayer additive electroforming,” Journal of Microelectromechanical Systems, vol. 16, pp. 1025-1035, 2007.
[14] J. Engel, J. Chen, Z. Fan, and C. Liu, “Polymer micromachined multimodal tactile sensors,” Sensors and Actuators A: Physical, vol. 117, pp. 50-61, 2005.
[15] Z. H. Khan, M. Husain, T. P. Perng, N. Salah, and S. Habib, “Electrical transport via variable range hopping in an individual multi-wall carbon nanotube,” Journal of Physic: Condensed Matter, vol. 20, pp. 475207, 2008.
[16] J. Liu, M. J. Casavant, M. Cox, D. A. Walters, P. Boul, W. Lu, A. J. Rimberg, K. A. Smith, D. T. Colbert, and R. E. Smalley, “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates,” Chemical Physics Letters, vol. 303, pp. 125-129, 1999.
[17] J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L.-C. Qin, and O. Zhou, “Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis,” Nano Letters, vol. 5, pp. 11-14, 2005.
[18] Y. Wei, W. Wei, L. Liu, and S. Fan, “Mounting multi-wall carbon nanotubes on probes by dielectrophoresis,” Diamond & Related Materials, vol. 17, pp. 1877-1880, 2008.
[19] L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud, M. Chaumont, T. Fournier, and A. M. Bonnot “Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD,” Thin Solid Films, vol. 501, pp. 299-302, 2006.
[20] E. Yerilmez, Q. Wang, R. J. Chen, D. Wang, and H. Dai, “Wafer scale production of carbon nanoutbes scanning probe tips for atomic force microscpoy,” Applied Physics Letters, vol. 80, pp. 2225, 2002.
[21] http://www.unidym.com/
[22] http://www.nokia.com/
[23] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, vol. 363, pp. 603-605, 1993.
[24] T. Yamada, Y. Hayamizu, Y. Yomogida, A. L. Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nature Naotechnology, vol. 6, pp. 296-301, 2011.
[25] K. Lee, S. S. Lee, J. A. Lee, K.-C. Lee, and S. Ji, “Carbon nanotube film piezoresistors embedded in polymer membranes,” Applied Physics Letters, vol. 96, pp. 013511, 2010.
[26] P. Liu, L. Liu, K. Jiang, and S. Fan, “Carbon-Nanotube-Film microheater on a polyethylene terephthalate substrate and its application in thermochromic displays,” Small, vol. 7, pp. 732-736, 2011.
[27] C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, “Size effects in carbon nanotubes,” Physical Review Letters, vol. 81, pp. 1869-1872, 1998.
[28] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
[29] S. Dohn, J. Kjelstrup-Hansen, D. N. Madsen, K. Molhave, and P. Boggild, “Multi-walled carbon nanotubes integrated in microcantilevers for application of tensile strain,” Ultramicroscopy, vol. 105, pp. 209-214, 2005.
[30] J. Fraden, Handbook of Modern Sensors, New York: Springer-Verlag, 1996.
[31] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications, Berlin: Springer, 2001.
[32] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, and F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, vol. 315, pp. 25-30, 1999.
[33] P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science, vol. 292, pp. 706-709, 2001.
[34] D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, “Thermal and electrical transport in multi-walled carbon nanotubes,” Physics Letters A, vol. 329, pp. 207-213, 2004.
[35] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, “Carbon nanotube quantum resistors,” Science, vol. 280, pp. 1744-1746, 1998.
[36] N. Hu, Y. Karube, C. Yan, Z. Masuda, and H. Fukunaga, “Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor,” Acta Materialia, vol 56, pp. 2929-2936, 2008.
[37] M. Park, H. Kim, and J. P. Youngblood, “Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films,” Nanotechnology, vol. 19, pp. 055705, 2008.
[38] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, “Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor,” Carbon, vol. 48, pp. 680-687, 2010.
[39] X Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, “Surfactant-assisted processing of carbon nanotube/polymer composites,” Chemistry of Materials, vol 12, pp. 1049-1052, 2000.
[40] M. Knite, V. Tupureina, A. Fuith, J. Zavickis, and V. Teteris, “Polyisoprene-multi-wall carbon nanotube composites for sensing strain,” Materials Science and Engineering C, vol. 27, pp. 1125-1128, 2007.
[41] C.-S. Woo, C.-H. Lim, C.-W. Cho, B. Park, H. Ju, D.-H. Min, C.-J. Lee, and S.-B. Lee, “Fabrication of flexible and transparent single-wall carbon nanotube gas sensors by vacuum filtration and poly(dimethylsiloxane) mold transfer,” Microelectronic Engineering, vol. 84, pp. 1610-1613, 2007.
[42] X. Song, S. Liu, Z. Gan, Q. Lv, H. Cao, and H. Yan, “Controllable fabrication of carbon nanotube-polymer hybrid thin film for strain sensing,” Microelectronic Engineering, vol. 86, pp. 2330-2333, 2009.
[43] Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, S. Curran, O. Nalamasu, and P. M. Ajayan, “Aligned carbon nanotube-polymer hybrid architectures for diverse flexible electronic applications,” Nano Letters, vol. 6, pp. 413-418, 2006.
[44] D. H. Leem, J. E. Kim, T. H. Han, J. W. Hwang, S. Jeon, S.-Y. Choi, S. H. Hong, W. J. Lee, R. S. Ruoff, and S. O. Kim, “Versatile carbon hybrid films composed of vertical carbon nanotubes grown on mechanically compliant graphene films,” Advanced Materials, vol. 22, pp. 1247-1252, 2010.
[45] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, “Elastomeric conductive composites based on carbon nanotube forests,” Advanced Materials, vol. 22, pp. 2263-2267, 2010.
[46] J. M. Engel, N. Chen, K. Ryu, S. Pandya, C. Tucker, Y. Yang, and C. Liu, “Multi-layer embedment of conductive and non-conductive PDMS for all-elastomer MEMS,” Technical Digest of the 12th Solid State Sensors, Actuator, and Microsystems Workshop, Hilton Head Island, SC, June, 2006, pp. 316-319.
[47] J. M. Engel, J. Chen, and C. Liu, “Polyurethane ruber all-polymer artificial hair cell sensor,” Journal of Microelectromechanical Systems, vol. 15, pp. 729-736, 2006.
[48] K. S. Ryu, X. Wang, K. Shaikh, and C.Liu, “A method for precision patterning of silicone elastomer and its applications,” Journal of Microelectromechanical Systems, vol. 13, pp. 568-575, 2004.
[49] C.-X. Liu and J.-W. Choi, “Patterning conductive PDMS nanocomposite in an elastomer using microcontact priniting,” Journal of Micromechanics and Microengineering, vol. 19, pp. 085019, 2009.
[50] C. Lim, D.-H. Min, and S.-B. Lee, “Direct patterning of carbon nanotube network devices by selective vacuum filtration,” Applied Physics Letters, vol. 91, pp. 243117, 2007.
[51] J. Engel, J. Chen, and C. Liu, “Development of polyimide flexible tactile sensor skin,” Journal of Micromechanics and Microengineering, vol. 13, pp. 359-366, 2003.
[52] E.-S. Hwang, J.-h. Seo, and Y.-J. Kim, “A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics,” Journal of Microelectromechanical Systems, vol. 16, pp. 556-563, 2007.
[53] K. Kim, K. R. Lee, W. H. Kim, K.-B. Park, T.-H. Kim, J.-S. Kim, and J. J. Pak, “Polymer-based flexible tactile sensor up to 32 × 32 arrays integrated with interconnection terminals,” Sensors and Actuators A: Physical, vol. 156, pp. 284-291, 2009.
[54] K.-J. Lee, K. A. Fosser, and R. G. Nuzzo, “Fabrication of stable metallic patterns embedded in poly(dimethylisloxane) and model applications in non-planar electronic and Lab-on-a-Chip device patterning,” Advanced Functional Materials, vol. 15, pp. 557-566, 2005.
[55] W. T. Li, R. B. Charters, B. Luther-Davies, and L. Mar, “Significant improvement of adhesion between gold thin films and a polymer,” Applied Surface Science, vol. 233, pp. 227-233, 2004.
[56] B. T. Tung, V. T. Dau, D. V. Dao, T. Yamada, K. Hata, and S. Sugiyama, “Fabrication and characterization of silicon micro mirror with CNT hinge,” IEEE MEMS Conference, Cancun, Mexico, January, 2011, pp. 688-691.
[57] J.-I. Lee, Y. Eun, H.-I. Jung, J. Choi, and J. Kim, “A novel accelerometer based on contact resistance of integrated carbon nanotubes,” IEEE MEMS Conference, Cancun, Mexico, January, 2011, pp. 533-536.
[58] C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M. K. Tripp, A. Jungen, S. Roth, V. M. Bright, and C. Hierold, “Fabrication of single-walled carbon-nanotube-based pressure sensors,” Nano Letters, vol. 6, pp. 233-237, 2006.
[59] D.-W. Lee and Y.-S. Choi, “A novel pressure sensor with a PDMS diaphragm,” Microelectronic Engineering, vol. 85, pp. 1054-1058, 2008.
[60] C.-M. Lin, L.-Y. Lin, and W. Fang, “Monolithic integration of carbon nanotubes based physical sensors,” IEEE MEMS Conference, Hong Kong, China, January, 2010, pp. 55-58.
[61] A. Bsoul, M. S. M. Ali, and K. Takahata, “Piezoresistive pressure sensor using vertically aligned carbon-nanotube forests,” Electronics Letters, vol. 47, pp. 807-808, 2011.
[62] W. Fang, H. Y. Chu, W. K. Hsu, T. W. Cheng, and N. H. Tai, “Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications,” Advanced Materials, vol. 17, pp. 2987-2992, 2005.
[63] D. N. Hutchison, N. B. Morrill, Q. Aten, B. W. Turner, B. D. Jensen, L. L. Howell, R. R. Vanfleet, and R. C. Davis, “Carbon nanotubes as a framework for high-aspect-ratio MEMS Fabrication,” Journal of Microelectromechanical Systems, vol. 19, pp. 75-82, 2010.
[64] S. C. Hawkins, J. M. Poole, and C. P. Huynh, “Catalyst distributeon and carbon nanotube morphology in multilayer forests by mixed CVD processes,” Journal of Physical Chemistry C, vol. 113, pp. 12976-12982, 2009.
[65] A. Cao, X. Zhang, J. Wei, Y. Li, C. Xu, J. Liang, D. Wu, and B. Wei, “Macroscopic three-dimensional arrays of Fe nanoparticles supported in aligned carbon nanotubes,” Journal of Physical Chemistry B, vol. 105, pp. 11937-11940, 2001.
[66] L. Zhu, J. Xu, F. Xiao, H. Jiang, D. W. Hess, and C. P. Wong, “The growth of carbon nanotube stacks in the kinetics-controlled regime,” Carbon, vol. 45, pp. 344-348, 2007.
[67] X. Li, A. Cao, Y. J. Jung, R. Vajtai, and P. M. Ajayan, “Bottom-up growth of carbon nanotube multilayers: Unprecedented growth,” Nano Letters, vol. 5, pp. 1997-2000, 2005.
[68] L. Zhu, Y. Xiu , D. W. Hess, and C. P. Wong, “Aligned carbon nanotube stacks by water-assisted selective etching,” Nano Letters, vol. 5, pp. 2641-2645, 2005.
[69] Z. Yang, Y. Yu, X. Li, and H. Bao, “Nano-mechanical electro-thermal probe array used for high-density storage based on NEMS technology,” Microelectronics Reliability, vol. 46, pp.805-810, 2006.
[70] G. J. M. Krijnen, M. Dijkstra, J. J. van Baar, S. S. Shankar, W. J. Kuipers, R. J. H. de Boer, D. Altpeter, T. S. J. Lammerink, and R. Wiegerink, “MEMS based hair flow-sensors as model systems for acoustic perception studies,” Nanotechnology, vol. 17, pp.S84-S89, 2006.
[71] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, and F. Delcomyn, “Design and fabrication of artificial lateral line flow sensors,” Journal of Micromechanics and Microengineering, vol. 12, pp.655-661, 2002.
[72] A. Qualtieri, F. Rizzi, M. T. Todaro, A. Passaseo, R. Cingolani, and M. de Vittorio, “Stress-driven AlN cantilever-based flow sensor for fish lateral line system,” Microelectronic Engineering, vol. 88, pp. 2376-2378, 2011.
[73] C.-M. Lin, Y.-T. Lee, S.-R. Yeh, and W. Fang, “Flexible carbon nanotubes electrode for neural recording,” Biosensors and Bioelectronics, vol. 24, pp. 2791-2797, 2009.
[74] C.-M. Lin and W. Fang, “Batch-fabricated flexible carbon nanotubes’ photosensor array,” Nanotechnology, vol. 20, pp. 466502, 2009.
[75] T.-H. Chen, S.-Y. Lu, C.-M. Lin, W.-K. Hsu, and W. Fang, “Carbon nanotube arrays on flexible substrate and their field emssion characteristic,” IEEE MEMS Conference, Tucson, AZ, January, 2008, pp. 697-700.
[76] W. K. Hsu, V. Kotzeva, P. C. P. Watts, and G. Z. Chen, “Circuit elements in carbon nanotube-polymer composites,” Carbon, vol. 42, pp. 1707-1712, 2004.
[77] W.-K. Hsu, H.-Y. Chu, T.-H. Chen, T.-W. Cheng, and W. Fang, “An exceptional bimorph effect and a low quality factor from carbon nanotube-polymer composites,” Nanotechnology, vol. 19, pp. 135304, 2008.
[78] P. Rezai, P. R. Selvaganapathy, and G. R. Wohl, “Plasma enhanced bonding of polydimethylsiloxane with parylene and its optimization,” Journal of Micromechanics and Microengineering, vol. 21, pp. 065024, 2011.
[79] W.-S. Su, C.-F. Hu, C.-M. Lin, and W. Fang, “Development of a 3D distributed carbon nanotubes on flexible polymer for normal and shear forces measurement,” IEEE MEMS Conference, Hong Kong, China, January, 2010, pp. 615-618.
[80] A. P. Gerratt, I. Penskiy, and S. Bergbreiter, “SOI/elastomer process for energy storage and rapid release,” Journal of Micromechanics and Microengineering, vol. 20, pp. 104011, 2010.
[81] Y. Zhang, C. J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y. T. Zhu, and Q. X. Jia, “Polymer-embedded carbon nanotube ribbons for stretchable conductors,” Advanced Materials, vol. 22, pp. 3027-3031, 2010.
[82] C.-X. Liu and J-W Choi, “Strain-dependent resistance of PDMS and carbon nanotubes composite microstructures,” IEEE Transactions on Nanotechnology, vol. 9, pp. 590-594, 2010.
[83] G. A. Holzapfel, “On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures,” International Journal for Numerical Methods in Engineering, vol. 39, pp. 3903-3926, 1996.
[84] F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” Journal of Micromechanics and Microengineering, vol. 18, pp. 065008, 2008.
[85] C. Cau, H. S. Ko, and H. T. Chen, “Piezoresistive characteristics of MWNT nanocomposites and fabrication as polymer pressure sensor,” Nanotechnology, vol. 20, pp.1885503, 2009.
[86] F. M. Yaul and J. H. Lang, “A flexible underwater pressure sensor array using a conductive elastomer strain gauge,” Journal of Microelectromechanical Systems, vol. 21, pp. 897-907, 2012.
[87] C.-C. Wen and W. Fang, “Tuning the sensing range and sensitivity of three axes tactile sensors using the polymer composite membrane,” Sensors and Actuators A: Physical, vol. 145-146, pp. 14-22, 2008.
[88] Y.-C. Liu, C.-M. Sun, L.-Y. Lin, M.-H. Tai, and W. Fang, “Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in,” Journal of Microelectromechanical Systems, vol. 20, pp. 119-127, 2011.
[89] C. H. Hu, C. H. Liu, L. Z. Chen, and S. S. Fan, “Semiconductor behavior of low loading multiwall carbon nanotube/poly(dimethylsiloxane) composites,” Applied Physics Letters, vol. 95, pp. 103103, 2009.
[90] G. Baumgartner, M. Carrard, L. Zuppiroli, W. Bacsa, W. A. de Heer, and L. Forró, “Hall effect and magnetoresistance of carbon nanotube films,” Physical Review B, vol. 55, pp. 6704-6707, 1997.
[91] H. Peng, “Aligned carbon nanotube/polymer composite films with robust flexibility high transparency and excellent conductivity,” Journal of the American Chemical Society, vol. 130, pp. 42-43, 2008.
[92] Q. Li, Y. Li, X. Zhang, S. B. Chikkannanavar, Y. Zhao, A. M. Dangelewicz, L. Zheng, S. K. Doorn, Q. Jia, D. E. Peterson, P. N. Arendt, and Y. Zhu, “Structure-dependent electrical properties of carbon nanotube fibers,” Advance Materials, vol. 19, pp.3358-3363, 2007.
[93] X. Wang, Y. Liu, G. Yu, J. Zhang, and D. Zhu, “Anisotropic electrical transport properties of aligned carbon nanotube films,” Journal of Physical Chemistry B, vol. 105, pp. 9422-9425, 2001.
[94] C. L. Pint, Y.-Q. Xu, E. Morosan, and R. H. Hauge, “Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes,” Applied Physics Letters, vol. 94, pp. 182107, 2009.
[95] J.-Y. Wang, C.-F. Hu, C. Hong, W.-S. Su, and W. Fang, “Development of 3D CNTs Interdigitated Finger Electrodes on Flexible Polymer for Bending Strain Measurement,” IEEE MEMS Conference, Cancun, Mexico, January, 2011, pp. 408-411.
[96] G.-H. Jeong, N. Olofsson, Lena K. L. Falk, and Eleanor E. B. Campbell, “Effect of catalyst pattern geometry on the growth of vertically aligned carbon nanotube arrays,” Carbon, vol. 47, pp. 696-704, 2009.
[97] M. Xu, Don N. Futaba, M. Yumura, and K. Hata, “Alignment control of carbon nanotube forest from random to nearly perfectly aligned by utilizing the crowding effect,” ACS Nano, vol. 7, pp. 5837-5844, 2012.
[98] A. Yasukawa, M. Shimazoe, and Y. Matsuoka, “Simulation of circular silicon pressure sensor with a center boss for very low pressure measurement,” IEEE Transactions on Electron Devices, vol. 36, pp. 1295-1302, 1989.
[99] H. Sandmaier and K. Kühl, “A square-diaphragm piezoresistive pressure sensor with a rectangular central boss for low-pressure ranges,” IEEE Transactions on Electron Devices, vol. 40, pp. 1754-1759, 1993.
[100] T. Bever and M. Kandler, “Solutions for tire pressure monitoring systems,” Advanced Microsystems for Automotive Applications 2003, pp. 261-269.
[101] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE Journal of Solid-State Circuits, vol. 26, pp. 1998-2007, 1991.
[102] J. Mitchell, G. R. Lahiji, and K. Najafi, “An improved performance poly-Si pirani vacuum gauge using heat-distributing structural supports,” Journal of Microelectromechanical Systems, vol. 17, pp. 93-102, 2008.
[103] A. F. da Rocha, I. dos Santos, F. A. O. Nascimento, M. D. B. Melo, D. Haemmerich, and J. W. Valvano, “Effects of the time response of the temperature sensor on thermodilution measurements,” Physiological Measurement, vol. 26, pp. 885-901, 2005.
[104] L. Delzeit, C. V. Nguyen, B. Chen, R. Stevens, A. Cassell, J. Han, and M. Meyyappan, “Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts,” Journal of Physical Chemistry B, vol. 106, pp. 5629-5635, 2002.
[105] M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez, C. Ducati, A. C. Ferrari, A. M. Blackbum, K.-Y. Wang, and J. Robertson, “Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures,” Nano Letters, vol. 6, pp. 1107-1112, 2006.
[106] T. Komukai, K. Aoki, H. Furuta, M. Furuta, K. Oura, and T. Hirao, “Density control of carbon nanotubes through the thickness of Fe/Al mulitlayer catalyst,” Japanese Journal of Applied Physics, vol. 45, pp. 6043-6045, 2006.
[107] C. Fisher, Z. J. Han, I. Levchenko, and K. Ostrikov, “Control of dense carbon nanotube arrays via hierarchical multilayer catalyst,” Applied Physics Letters, vol. 99, pp. 143104, 2011.
[108] G. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari, and H. Kawarada, “Low temperature synthesis of extremely dense and vertically aligned single-walled carbon nanotubes,” Japanese Journal of Applied Physics, vol. 44, pp. 1558-1561, 2005.
[109] S. Chakrabarti, H. Kume, L. Pan, T. Nagasaka, and Y. Nakayama, “Number of walls controlled synthesis of millimeter-long vertically aligned brushlike carbon nanotubes,” Journal of Physical Chemistry C, vol. 111, pp. 1929-1934, 2007.
[110] K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sensors and Actuators A, vol. 127, pp. 295-301, 2006.