簡易檢索 / 詳目顯示

研究生: 鄭明杰
Cheng, Ming-Chieh
論文名稱: 應用於光伏系統具被動式漣波消除電路之高升壓比模組整合型轉換器
A High Step-Up Ratio Module Integrated Converter with Passive Ripple Cancelling Circuit for Photovoltaic Systems
指導教授: 潘晴財
Pan, Ching-Tsai
朱家齊
Chu, Chia-Chi
口試委員: 林昇甫
Lin, Sheng-Fuu
賴炎生
Lai, Yen-Shin
鄧人豪
Teng, Jen-Hao
廖聰明
Liaw, Chang-Ming
鄭博泰
Cheng, Po-Tai
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 211
中文關鍵詞: 分散式能源太陽光伏系統最大功率追蹤漣波消除電路高升壓比電壓源型直/交流轉換器單級式直/交流轉換器
外文關鍵詞: Distributed energy resource (DER), photovoltaic energy harvesting system, maximum power point tracking (MPPT), Ripple Cancelling Circuit (RCC), high voltage gain, voltage source DC/AC converter, single-stage DC/AC converter
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應能源危機,目前各國皆以節能減碳、開發新能源、能源高效率使用以及發展分散式發電技術為長期政策目標。而其中光伏能源具有取之不盡、用之不竭與無震動噪音之優點,所以近年來始終維持很高的裝置成長率。本論文所進行之研究重點旨在針對太陽光伏電能轉換系統,分別對於光伏模組輸出端以及後級電能轉換器架構方面提出增進系統電能轉換效率之技術。首先,本論文點出了光伏模組輸出端所接以切換式電力轉換器固有之電流漣波會造成光伏模組輸出功率無法保持運轉於最大輸出功率點、導致其平均輸出功率減少等問題。針對此問題,本論文提出一具體量化之方式探討電流漣波對於太陽能光伏系統所造成的影響,並進一步提出被動式電流漣波消除技術解決此困境,使得系統能更精確地操作於光伏最大功率點,以有效擷取太陽能最大輸出功率。
    本論文所提之被動式電流漣波消除技術包括一被動式連續性漣波消除電路以及一被動式脈衝性漣波消除電路,可分別針對具有連續性/脈衝性電流漣波之轉換器消除其輸入端/輸出端之電流漣波。本論文所提電流漣波消除電路皆具有架構簡單、模組化架構以及設計富彈性等特點。針對所提被動式連續性漣波消除電路,由於傳統邱克型轉換器具有可升/降壓以及低輸入/輸出電流漣波之特點,本文以其為例整合所提被動式連續性漣波消除電路,進而提出一具有零輸入電流漣波之邱克型轉換器。另一方面,針對所提被動式脈衝性漣波消除電路,由於返馳式轉換器為小功率電力電子產品中最被廣泛應用之電路架構,本文以其為例整合所提被動式脈衝性漣波消除電路,進而提出一具有零輸入電流漣波之返馳式轉換器。相對應所提漣波消除電路之工作原理、穩態分析、零電流漣波設計條件、與傳統直/直流以及直/交流轉換器整合之電路架構亦於本論文中一併完成。
    此外,由於光伏模組係屬低壓輸出之再生能源,傳統轉換器因其電壓轉換比不夠高,使得轉換器開關必須接近臨界進而造成開關導通損失增加等問題。爰此,本論文針對光伏模組低壓輸出之特性,提出一具有高升壓比以及低開關跨壓特點之新型直/交流模組整合型轉換器以增進整體電能轉換效率。針對所提高升壓比直/交流轉換器之工作原理、穩態分析、直流及小訊號數學模型亦於本論文中一併完成。根據所提之學理基礎,本論文提供了八種整合型高升壓比直/交流轉換器電路架構作為參考。再者,本論文所提之漣波消除電路亦可整合至該高升壓比直/交流轉換器中以進一步增加轉換器輸出功率。
    最後,本論文根據所提之被動式電流漣波消除電路以及高升壓比直/交流轉換器,實際製作三個轉換器雛型電路以驗證所提技術之可行性與優越性。第一,針對所研製之90W零輸入電流漣波邱克型轉換器電路,其實驗結果顯示本論文所提被動式連續性電流漣波消除電路可有效減小傳統邱克轉換器之輸入電流漣波達98%,相較於原邱克轉換器可使光伏模組之平均輸出功率增加7%。第二,針對所研製之100W零輸入電流漣波返馳式轉換器電路,其實驗結果顯示本論文所提被動式脈衝性電流漣波消除電路可有效減小傳統返馳式轉換器之輸入電流漣波達96%。此外,值得一提的是於滿載100W之電路測試條件下,整合所提被動式脈衝性電流漣波消除電路至傳統返馳式轉換器可有效提升其電能轉換效率達10.23%。第三,針對本論文所研製之200W高升壓比直/交流轉換器,實驗結果顯示其最高效率可達92.3%。相較於傳統邱克型直/交流轉換器,本論文所提轉換器於輕載40W測試條件下可提升其效率達10%,且於120W及200W測試條件下可提升其效率分別達3%及1.4%。


    Due to the limited fossil energy and greenhouse effect, more and more countries are devoting to development and promotion of renewable energy sources. Among the various renewable energy sources, solar energy has the advantages of being inexhaustible and noiseless. Hence, installation of photovoltaic (PV) energy harvesting system keeps a rather high growing rate in recent years. For most PV systems, a switching power converter is required as a regulator for harvesting the maximum output power. However, the inherent current ripple of switching power converter may cause significant impact on the output of PV system. In this dissertation, the first objective is focused on the study of the quantitative ripple-affected power reduction of PV energy harvesting systems as well as proposing a passive ripple cancelling technique to solve the above dilemma.
    A passive continuous ripple cancelling circuit (PCRCC) and a passive pulsating ripple cancelling circuit (PPRCC) are proposed for eliminating the continuous and pulsating current ripple of power converters, respectively. Special features of the proposed passive ripple cancelling circuits (PRCCs) include simple, modular structure, and high degree of design flexibility. A zero input current ripple Ćuk-type converter is adopted and analyzed as an example for the proposed PCRCC because of its step up/down capability and non-pulsating input/output current feature. On the other hand, for the proposed PPRCC, a zero input current ripple flyback-type converter is proposed and analyzed as an example because of its comprehensive utilization in small power rating commercial products. The corresponding steady-state analysis, zero ripple design criteria, and the topologies of several conventional power converters integrated with the proposed PCRCC/PPRCC are provided.
    In addition, a novel high voltage gain single-stage DC/AC converter is proposed for low-voltage and high-current output PV module applications. A flyback-type auxiliary circuit is integrated with an isolated Ćuk-derived voltage source DC/AC converter to achieve a much higher voltage gain so that the conversion efficiency can be enhanced. Steady-state characteristics, performance analysis, simulation and experimental results are given to show the merits of the proposed high voltage gain single-stage DC/AC converter. Based on the same integration concept, a family of different topologies is also presented for reference. Moreover, the proposed PRCC is also integrated into the proposed high voltage gain DC/AC converter as an example for further increasing the output power.
    Finally, three converter prototypes are constructed for verifying the effectiveness of the proposed PCRCC, PPRCC, and high voltage gain DC/AC converter, respectively. First, the experimental results of the 90W rating zero input current ripple Ćuk-type converter prototype show that the resulting peak-to-peak input current ripple is reduced by 98% of the original Ćuk converter input current ripple, and the harvested average PV power of the proposed converter can be increased by 7% as compared with that of the converter without the proposed PCRCC. Second, the experimental results of the 100W rating zero input current ripple flyback-type converter prototype show that the resulting peak-to-peak input current ripple is reduced by 98% of the original flyback converter input current ripple, and nearly 2.83% and 10.23% improvement in efficiency can be achieved by the proposed PPRCC, at 70W and 100W load conditions, respectively. Third, the experimental results of the 200W rating high voltage gain DC/AC converter show that the highest efficiency of 92.3% can be achieved. There is approximately 10% improvement in efficiency at 40W light load as compared with the conventional isolated Ćuk-derived DC/AC converter. Also, it indicates that nearly 3% and 1.4% improvement in efficiency can be achieved by the proposed DC/AC converter, under 120W and 200W load conditions, respectively.

    CONTENTS CHINESE ABSTRACT I ABSTRACT III ACKNOWLEDGEMENTS V CONTENTS VII LIST OF FIGURE CAPTIONS IX LIST OF TABLE CAPTIONS XV 1. INTRODUCTION 1.1 Motivation 1 1.2 Literature Survey 2 1.3 Contributions of the Dissertation 16 1.4 Outline of the Contents 22 2. PROPOSED RIPPLE CANCELLING CIRCUITS 2.1 Introduction 26 2.2 Characteristics of Photovoltaic Systems 27 2.3 Impact of Current Ripple on PV Output Power 35 2.4 Proposed Passive Continuous Ripple Cancelling Circuit 45 2.5 Proposed Passive Pulsating Ripple Cancelling Circuit 56 3. PROPOSED NOVEL MODULE INTEGRATED CONVERTER WITH HIGH VOLTAGE GAIN CAPABILITY 3.1 Introduction 73 3.2 Circuit Configuration and Operating Principle 74 3.3 Analysis of Steady-State Characteristics 81 3.4 Topology Variations of the Proposed Modular Integrated Converter 88 3.5 Derivation of the Proposed Extended PRCC for the Novel MIC 91 4. MODELING OF PROPOSED HIGH VOLTAGE GAIN MODULE INTEGRATED CONVERTER 4.1 Introduction 111 4.2 State-Space Averaging of the Proposed Converter 112 4.3 DC Model of the Proposed Converter 130 4.4 AC Model of the Proposed Converter 135 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 5.1 Introduction 143 5.2 Zero Input Current Ripple Ćuk-Type Converter 145 5.3 Zero Input Current Ripple Flyback-Type Converter 164 5.4 High Voltage Gain DC/AC Converter 178 6. CONCLUSIONS 6.1 Conclusions 193 6.2 Recommended Future Research 196 REFERENCES 198 AUTHOR'S PUBLICATION LIST

    REFERENCES

    Overview of Distributed Energy Systems
    [1]B. K. Bose, “Global warming: energy, environment pollution, and the impact of power electronics,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 6-17, Mar. 2010.
    [2]J. M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. P. Comech, R. Granadino, and J. I. Frau, “Distributed generation: toward a new energy paradigm,” IEEE Industrial Electronics Magazine, vol. 4, no. 1, pp. 52-64, Mar. 2010.
    [3]S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, no. 8, pp. 1216-1226, Aug. 2001.
    [4]J. S. Lai, “Power conditioning systems for renewable energies,” International Conference on Electrical Machines and Systems, pp. 209-218, 2007.
    [5]J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galvan, R. C. P. Guisado, Ma. A. M. Prats, J. I. Leon, and N. Moreno-Alfonso, “Power-electronic systems for the grid integration of renewable energy sources: a survey,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1002-1016, Jun. 2006.
    [6]L. Y. Lu, J. H. Liu, C. C. Chu, Y. C. Wu, and P. T. Cheng, “Real-time simulations of a laboratory-scale micro-grid system in Taiwan,” IEEE 13th Workshop on Control and Modeling for Power Electronics, pp. 1-8. 2012.
    [7]J. H. Teng, “Modelling distributed generations in three-phase distribution load flow,” IET Generation, Transmission and Distribution., vol. 2, no. 3, pp. 330-340, May 2008.

    Overview of Photovoltaic Systems and its MPPT Control
    [8]J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: operation and modeling,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2752-2758, Jul. 2008.
    [9]C. Jaen, C. Moyano, X. Santacruz, J. Pou, and A. Arias, “Overview of maximum power point tracking control techniques used in photovoltaic systems,” IEEE International Conference on Electronics, Circuits and Systems, pp. 1099-1102, 2008.
    [10]C. T. Pan, J. Y. Chen, C. P. Chu, and Y. S. Huang, “A fast maximum power point tracker for photovoltaic power systems,” IEEE Industrial Electronics Conference, pp. 21-24, 1999.
    [11]C. T. Lee, J. N. Liou, H. P. Ma, P. C. Huang, and P. T. Cheng, “Implementation of the digital control algorithm for the maximum power point tracking DC modules,” IEEE 13th Workshop on Control and Modeling for Power Electronics, pp. 1-6, 2012.
    [12]T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, Jun. 1985.
    [13]M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Transactions on Energy Conversion, vol. 17, no. 4, pp. 514-522, Dec. 2002.
    [14]H. Sugimoto and H. Dong, “A new scheme for maximum photovoltaic power tracking control,” Proceedings of the Power Conversion Conference, vol.2, pp. 691-696, 1997.
    [15]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method”, IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963-973, Jul. 2005.
    [16]O. Wasynczuk, “Dynamic behavior of a class of photovoltaic power systems,” IEEE Transactions on Power Apparatus and Systems, vol. 102, no. 9, pp. 3031-3037, Sep. 1983.
    [17]Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point tracking controller for photovoltaic energy conversion system,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, pp. 594-601, Jun. 2001.
    [18]F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2622-2628, Jul. 2008.

    Ripple Impacts of Photovoltaic Systems
    [19]C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, “Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading,” IEEE Transactions on Industrial Electronics, vol. 28, no. 2, pp. 740-747, Feb. 2013.
    [20]N. D. Benavides and P. L. Chapman, “Modeling the effect of voltage ripple on the power output of photovoltaic modules,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2638-2643, Jul. 2008.

    Couple Inductor Based Ripple Cancelling Techniques
    [21]J. Wang, W. G. Dunford, and K. Mauch, “Analysis of a ripple-free input-current boost converter with discontinuous conduction characteristics,” IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 684-694, Jul. 1997.
    [22]R. Martinelli and C. Ashley, “Coupled inductor boost converter with input and output ripple cancellation,” IEEE Applied Power Electronics Conference and Exposition, pp. 567-572, 1991.
    [23]K. C. Daly, “Ripple determination for switch-mode DC/DC converters,” IEE Proceedings on Electronic Circuits and Systems, vol. 129, no. 5, pp. 229-234, Oct. 1982.
    [24]S. Ćuk, “A new zero-ripple switching DC-to-DC converter and integrated magnetics,” IEEE Transactions on Magnetics, vol. 19, no. 2, pp. 57-75, Mar. 1983.

    Zero-Ripple Filter Based Ripple Cancelling Techniques
    [25]G. Laimer and J. W. Kolar, “ ‘Zero’-ripple EMI input filter concepts for application in a 1-U 500kHz Si/SiC three-phase PWM rectifier,” IEEE Conference on Telecommunications Energy, pp. 750-756, 2003.
    [26]D. C. Hamill and P. T. Krein, “A ‘zero’ ripple technique applicable to any DC converter,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 1165-1171, 1999.
    [27]D. S. Lymar, T. C. Neugebauer, and D. J. Perreault, “Coupled-magnetic filters with adaptive inductance cancellation,” IEEE Power Electronics Specialists Conference, pp. 590-600, 2005.
    [28]J. W. Kolar, H. Sree, N. Mohan, and F. C. Zach, “Novel aspects of an application of ‘zero’-ripple techniques to basic converter topologies,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 796-803, 1997.
    [29]L. Zhengyu, C. Huiming, Q. Zhaoming, and T. C. Green, “An improved topology of boost converter with ripple free input current,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 528-532, 2000.
    [30]J. Wang, W. G. Dunford, and K. Mauch, “Design of zero-current-switching fixed frequency boost and buck converters with coupled inductors,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 273-279, 1995.

    Interleaved N-Phase Control
    [31]B. R. Lin and C. L. Huang, “Interleaved ZVS converter with ripple-current cancellation,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1576-1585, Apr. 2008.
    [32]S. Chandrasekaran and L. U. Gokdere, “Integrated magnetics for interleaved DC-DC boost converter for fuel cell powered vehicles,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 356-361, 2004.
    [33]T. F. Wu, J. R. Tsai, Y. M. Chen, and Z. H. Tsai, “Integrated circuits of a PFC controller for interleaved critical-mode boost converters,” IEEE Applied Power Electronics Conference, pp. 1347-1350, 2007.
    [34]G. Yao, A. Chen, and X. He, “Soft switching circuit for interleaved boost converters,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 80-86, Jan. 2007.
    [35]P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Modeling and control of a fuel cell current control loop of a 4-phase interleaved step-up converter for DC distributed system,” IEEE Power Electronics Specialists Conference, pp. 230-236, 2008.
    [36]P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-state analysis of an interleaved boost converter with coupled inductors,” IEEE Transactions on Industrial Electronics, vol. 47, no. 4, pp. 787-795, Aug. 2000.
    [37]S. Wang, Y. Kenarangui, and B. Fahimi, “Impact of boost converter switching frequency on optimal operation of fuel cell systems,” IEEE Conference on Vehicle Power and Propulsion, pp. 1-5, 2006.
    [38]P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Design and implementation of 2-phase interleaved boost converter for fuel cell power source,” IET Conference on Power Electronics, Machines and Drives, pp. 91-95, 2008.

    Active Ripple Filter Based Ripple Cancelling Techniques
    [39]M. J. Zhu, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G. Kassakian, “Design and evaluation of feedforward active ripple filter,” IEEE Transactions on Power Electronics, vol. 20, no. 2, pp. 276-285, Mar. 2005.
    [40]A. C. Chow and D. J. Perreault, “Design and evaluation of a hybrid passive/active ripple filter with voltage injection,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 2, pp. 471-480, Apr. 2003.
    [41]A. C. Chow and D. J. Perreault, “Design and evaluation of an active ripple filter using voltage injection,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 390-397, 2001.
    [42]L. Lawhite and M. F. Schlecht, “Design of active ripple filters for power circuits operating in the 1-10 MHz range,” IEEE Transactions on Power Electronics, vol. 3, no. 3, pp. 310-317, Jul. 1988.
    [43]A. Nasiri, “Different topologies of active EMI/ripple filters for automotive DC/DC converters,” IEEE Conference on Vehicle Power and Propulsion, pp. 168-173, 2005.
    [44]M. J. Zhu, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G. Kassakian, “Design and evaluation of an active ripple filter with rogowski-coil current sensing,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 874-880, 1999.
    [45]D. C. Hamill and O. T. Toh, “Analysis and design of an active ripple filter for DC-DC applications,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 267-273, 1995.
    [46]D. C. Hamill, “An efficient active ripple filter for use in DC-DC conversion,” IEEE Transactions on Aerospace and Electronic Systems, vol. 32, no. 3, pp. 1077-1084, Jul. 1996.
    [47]S. K. Liang, “A high efficiency step-up converter with a ripple mirror circuit for fuel cell systems,” Master Thesis, Dep. of Electrical Engineering, National Tsing Hua University, Taiwan, Jun. 2009.
    [48]C. T. Pan, S. K. Liang, and C. M. Lai, “A zero input current ripple boost converter for fuel cell applications by using a mirror ripple circuit,” IEEE International Power Electronics and Motion Control Conference- ECCE Asia, pp. 787-793, 2009.

    Stand-Alone PV Systems
    [49]A. E. S. A. Nafeh, “Design and economic analysis of a stand-alone PV system to electrify a remote area household in Egypt,” The Open Renewable Energy Journal, vol. 2, pp. 33-37, 2009.
    [50]M. E. Mnassri and M. A. S. Leger, “Stand-alone photovoltaic solar power generation system: A case study for a remote location in Tunisia,” 2010 IEEE Power and Energy Society General Meeting, pp. 1-4, 2010.
    [51]O. S. Asfour, “Integration of a stand-alone photovoltaic solar system into Gaza Strip residential buildings,” 2012 World Congress on Sustainable Technologies, pp. 71-74, 2012.
    [52]P. G. Nikhil and D. Subhakar, “Sizing and parametric analysis of a stand-alone photovoltaic power plant,” IEEE Journal of Photovoltaics, vol. 3, no. 2, pp. 776-784, Apr. 2013.
    [53]M. I. Desconzi, R. C. Beltrame, C. Rech, L. Schuch, and H. L. Hey, “Photovoltaic stand-alone power generation system with multilevel inverter,” International Conference on Renewable Energies and Power Quality, pp. 1-6, 2010.
    [54]D. B. Candido, J. R. R. Zientarski, R. C. Beltrame, J. R. Pinheiro, and H. L. Hey, “Implementation of a stand-alone photovoltaic system based on decentralized DC-DC converters,” Brazilian Power Electronics Conference, pp. 174-180, 2009.
    [55]A. D. Hansen, P. Sørensen, L. H. Hansen, and H. Bindner, “Models for a stand-alone PV system,” Risø Nat. Lab., Roskilde, Denmark, Risø-R-1219(EN)/ SEC-R-12, Dec. 2000.
    [56]K. A. Kavadias, C. Gitersos, D. Zafirakis, and J. K. Kaldellis, “Optimum photovoltaic angle estimation for stand-alone installations of South Europe on the basis of experimental measurements,” 2011 International Conference on Clean Electrical Power, pp.111-115, 2011.
    [57]R. J. Wai, W. H. Wang, and C. Y. Lin, “High-performance stand-alone photovoltaic generation system,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 240-250, Jan. 2008.
    [58]F. S. Kang, S. J. Park, S. E. Cho, C. U. Kim, and T. Ise, “Multilevel PWM inverters suitable for the use of stand-alone photovoltaic power systems,” IEEE Transactions on Energy Conversion, vol. 20, no. 4, pp. 906-915, Dec. 2005.

    Grid-Tied PV Systems
    [59]S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase grid-connected inverters for photovoltaic modules,” IEEE Transactions on Industry Applications, vol. 41, no. 5, pp. 1292-1306, Sep./Oct. 2005.
    [60]F. Blaabjerg, Z. Chen, and S. B. Kjaer, “Power electronics as efficient interface in dispersed power generation systems,” IEEE Transactions on Power Electronics, vol. 41, no. 5, pp. 1184-1194, Sep. 2004.
    [61]J. M. A. Myrzik and M. Calais, “String and module integrated inverters for single-phase grid connected photovoltaic systems – a review,” IEEE Bologna Power Tech Conference, vol. 2, pp. 430-437, 2003.
    [62]M. Calais, J. Myrzik, T. Spooner, and V. G. Agelidis, “Inverters for single-phase grid connected photovoltaic systems – an overview,” IEEE 33rd Annual Power Electronics Specialists Conference, vol. 4, pp. 1995–2000, 2002.
    [63]Y. Huang, F. Z. Peng, J. Wang, and D. W. Yoo, “Survey of the power conditioning system for PV power generation,” IEEE 37th Power Electronics Specialists Conference, pp. 1-6, 2006.
    [64]F. Schimpf and L. E. Norum, “Grid connected converters for photovoltaic, state of the art, ideas for improvement of transformerless inverters,” 2008 Nordic Workshop on Power and Industrial Electronics, pp. 1-6, 2008.

    Multi-Functional Inverters
    [65]D. Boroyevich, I. Cvetković, D. Dong, R. Burgos, F. Wang, and F. Lee, “Future electronic power distribution systems – a contemplative view,” Optimization of Electrical Electronic Equipment, pp. 1369-1380, 2010.
    [66]H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. François, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4583-4592, Oct. 2011.
    [67]R. Hara, H. Kita, T. Tanabe, H. Sugihara, A. Kuwayam, and S. Miwa,“Testing the technologies—Demonstration grid-connected photovoltaic projects in Japan,” IEEE Power Energy Magazine, vol. 7, no. 3, pp. 77-85, May/Jun. 2009.
    [68]M. Sechilariu, B. Wang, and F. Locment, “Building integrated photovoltaic system with energy storage and smart grid communication,” IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1607-1618, Apr. 2013.
    [69]S. Bae and A. Kwasinski, “Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1867-1876, Dec. 2012.
    [70]W. D Kellogg, M. H. Nehrir, G. Venkataramanan, and V. Gerez, “Generation unit sizing and cost analysis for stand-alone wind, photovoltaic, and hybrid wind/PV systems,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 1867-1876, Dec. 2012.
    [71]S. J. Chiang, K. T. Chang, and C. Y. Yen, “Residential photovoltaic energy storage system,” IEEE Transactions on Energy Conversion, vol. 13, no. 1, pp. 70-75, Mar. 1998.
    [72]E. Pérez, H. Beltran, N. Aparicio, and P. Rodríguez, “Predictive power control for PV plants with energy storage,” IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 482-490, Apr. 2013.
    [73]Y. Ru, J. Kleissl, and S. Martinez, “Storage size determination for grid-connected photovoltaic systems,” IEEE Transactions on Sustainable Energy, vol. 4, no. 1, pp. 68-81, Jan. 2013.
    [74]G. M. Tina and F. Pappalardo, “Grid-connected photovoltaic system with battery storage system into market perspective,” 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy, pp. 1-7, 2009.
    [75]B. Lu, and M. Shahidehpour, “Short-term scheduling of battery in a grid-connected PV/battery system,” IEEE Transactions on Power Systems, vol. 20, no. 2, pp. 1053-1061, May. 2005.
    [76]C. L. Nge, O. Midtgard, and L. Norum, “Power management of grid-connected photovoltaic inverter with storage battery,” 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, pp. 1-6, 2011.
    [77]C. M. Liaw, S. J. Chiang, and S. C. Huang, “A three-phase multi-functional battery energy storage system,” 1994 20th International Conference on Industrial Electronics, Control and Instrumentation, pp.458-463, 1994.
    [78]S. J. Chiang, C. M. Liaw, W. C. Chang, and W. Y. Chang, “Multi-module parallel small battery energy storage system,” IEEE Transactions on Energy Conversion, vol. 11, no. 1, pp. 146-154, Mar. 1996.

    Two-Stage Topologies for Low-Voltage Output Distributed Energy Resources
    [79]L. Zhang, K. Sun, Y. Xing, L. Feng, and H. Ge, “A modular grid-connected photovoltaic generation system based on DC bus,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 523-531, Feb. 2011.
    [80]S. Malo and R. Griñó, “Design, construction, and control of a stand-alone energy-conditioning system for PEM-type fuel cells,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2496-2506, Oct. 2010.
    [81]K. Y. Lo, Y. M. Chen, and Y. R. Chang, “MPPT battery charger for stand-alone wind power system,” IEEE Transactions on Power Electronics, vol. 26, no. 6, pp. 1631-1638, Jun. 2011.
    [82]Y. Xue, L. Chang, S. B. Kjaer, J. Bordonau, and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp, 1305-1314, Sep. 2004.

    Z-Source/Modified Z-Source DC/AC Converters
    [83]F. Z. Peng, “Z-source inverter,” IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 504-510, Mar./Apr. 2003.
    [84]J. Li, J. Liu, and L. Zeng, “Comparison of Z-source inverter and traditional two-stage boost-buck inverter in grid-tied renewable energy generation,” IEEE 6th International Power Electronics and Motion Control Conference, pp. 1493-1497, 2009.
    [85]P. C. Loh, F. Gao, and F. Blaabjerg, “Embedded EZ-source inverters,” IEEE Transactions on Industry Applications, vol. 46, no. 1, pp. 256-267, Jan./Feb. 2010.
    [86]S. M. Dehghan, M. Mohamadian, A. Yazdian, and F. Ashrafzadeh, “A dual-input–dual-output Z-source inverter,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 360-368, Feb. 2010.
    [87]C. J. Gajanayake, F. L. Luo, H. B. Gooi, P. L. So, and L. K. Siow, “Extended-boost Z-source inverters,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2642-2652, Oct. 2010.
    [88]M. Zhu, K. Yu, and F. L. Luo, “Switched inductor Z-source inverter,” IEEE Transactions on Power Electronics, vol. 25, no. 8, pp. 2150-2158, Aug. 2010.
    [89]F. Gao, P. C. Loh, F. Blaabjerg, and D. M. Vilathgamuwa, “Five-level current-source inverters with buck-boost and inductive-current balancing capabilities,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2613-2622, Aug. 2010.
    [90]A. A. Boora, A. Nami, F. Zare, A. Ghosh, and F. Blaabjerg, “Voltage-sharing converter to supply single-phase asymmetrical four-level diode-clamped inverter with high power factor loads,” IEEE Transactions on Power Electronics, vol. 25, no. 10, pp. 2507-2520, Oct. 2010.
    [91]S. Yang, F. Z. Peng, Q. Lei, R. Inoshita, and Z. Qian, “Current-fed quasi-z-source inverter with voltage buck–boost and regeneration capability,” IEEE Transactions on Industry Applications, vol. 47, no. 2, pp. 882-892, Mar./Apr. 2011.

    Single-Stage Energy Processing Based on Sepic-, Ćuk-, or Zeta-derived converters
    [92]J. Y. Chen, C. T. Pan, and Y. S. Huang, “Modeling of a three-phase step up/down AC/DC converter,” Asian Journal of Control, vol. 1, no. 1, pp. 58-65, 1999.
    [93]C. T. Pan and J. J. Shieh, “A single-stage three-phase boost-buck AC/DC converter based on generalized zero-space vectors,” IEEE Transactions on Power Electronics, vol. 14, no. 5, pp. 949-958, Sep. 1999.
    [94]C. T. Pan and J. J Shieh, “New space-vector control strategies for three-phase step-up/down AC/DC converter,” IEEE Transactions on Industrial Electronics, vol. 47, no. 1, pp. 25-35, Feb. 2000.
    [95]J. Kikuchi and T. A. Lipo, “Three-phase PWM boost-buck rectifiers with power-regenerating capability,” IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1361-1369, Sep./Oct. 2002.
    [96]L. H. Zhang, X. Yang, and X. Yao, “An isolated single stage buck-boost inverter,” IEEE Power Electronics Specialists Conference, pp. 2389-2395, 2008.
    [97]F. Gao, C. Liang, P. C. Loh, and F. Blaabjerg, “Buck-boost current-source inverters with diode-inductor network,” IEEE Transactions on Industry Applications, vol. 45, no. 2, pp. 794-804, Mar./Apr. 2009.
    [98]F. Gao, P. C. Loh, R. Teodorescu, F. Blaabjerg, and D. M. Vilathgamuwa, “Topological design and modulation strategy for buck-boost three-level inverters,” IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1722-1732, Jul. 2009.
    [99]J. J. Shieh, “SEPIC derived three-phase switching mode rectifier with sinusoidal input current,” IEE Proceedings - Electric Power Applications, vol. 147, no. 4, pp. 286-294, Jul. 2000.

    Passive Continuous Ripple Cancelling Circuit Proposed by Author
    [100]M. C. Cheng, “A zero input current ripple Ćuk converter for photovoltaic systems,” Master Thesis, Dep. of Electrical Engineering, National Tsing Hua University, Taiwan, Jul. 2009.

    Modeling of Photovoltaic Systems
    [101]M. Akbaba and M. A. A. Alattawi, “A new model for I-V characteristic of solar cell generators and its applications,” Solar Energy Materials and Solar Cells, pp. 123-132, 1995.
    [102]B. K. Bose, P. M. Szxzdsny, and R. L. Steigerwald, “Microcomputer Control of a Residential Photovoltaic Power Conditioning System,” IEEE Transactions on Industry Applications, vol. 1A-21, no. 5, pp. 1182-1191, Sep./Oct.1985.
    [103]M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1198-1208, May 2009.
    [104]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power electronics and control techniques for maximum energy harvesting in photovoltaic systems. London, New York: CRC Press, 2012, pp. 1-33.

    State-Space Averaging Technique
    [105]S. S. Ang, Power switching converters. Marcel Dekker, Inc. 1995.
    [106]R. W. Erickson and D. Maksimovics, Fundamentals of power electronics. Kluwer Academic Publisher, Inc., 2001.
    [107]K. Middlebrook and S. Ćuk, “A general unified approach to modeling switching-converter power stages,” IEEE Power Electronics Specialists Conference, vol. 2, pp. 18-34, 1976.
    [108]C. T. Rim, G. B. Joung, and G. H. Cho, “Practical switch based state-space modeling of DC-DC converters with all parasitics,” IEEE Transactions on Power Electronics, vol. 6, no. 4, pp. 611-617, Oct. 1991.
    [109]K. Schenk and S. Ćuk, “Small signal analysis and design of a single active switch converter providing power factor correction and full regulation,” 19th International Conference on Telecommunications Energy, pp. 124-131, 1997.
    [110]L. Martéinez, A. Poveda, and J. M. Miquel, “Modelling and analysis of the Ćuk convertor using the discrete impulse response method,” IEE Proceedings of Electronic Circuits and Systems, vol. 133, pp. 77-83, Apr. 1986.
    [111]C. M. Lai, “Modeling and parallel control of novel high step-up converters for low-voltage distributed energy resources,” Ph.D. Dissertation, Dep. of Electrical Engineering, National Tsing Hua University, Taiwan, Jun. 2010.
    [112]C. M. Liaw, S. J. Chiang, C. Y. Lai, K. H. Pan, G. C. Leu, and G. S. Hsu, “Modeling and controller design of a current-mode controlled converter,” IEEE Transactions on Industrial Electronics, vol. 41, no. 2, pp. 231-240, Apr. 1994.

    High Voltage Gain DC/DC Converters with Similar Efficiency Curves
    [113]K. B. Park, G. W. Moon, and M. J. Youn, “Nonisolated high step-up stacked converter based on boost-integrated isolated converter,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 577-587, Feb. 2011.
    [114]C. Yoon, J. Kim, and S. Choi, “Multiphase DC-DC converters using a boost-half-Bridge cell for high-voltage and high-power applications,” IEEE Transactions on Power Electronics, vol. 26, no. 2, pp. 381-388, Feb. 2011.
    [115]Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A novel high step-up DC-DC converter for a microgrid system,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1127-1136, Apr. 2011.
    [116]S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, “A cascaded high step-up DC-DC converter with single switch for microsource applications,” IEEE Transactions on Power Electronics, vol. 26, no. 4, pp. 1146-1153, Apr. 2011.

    Soft-Switching Techniques
    [117]W. Yu, J. S. Lai, and S. Y. Park, “An improved zero-voltage switching inverter using two coupled magnetics in one resonant pole,” IEEE Transactions on Power Electronics, vol. 25, no. 4, pp. 952-961, Apr. 2010.
    [118]Y. Li and F. C. Lee, “A generalized zero-current-transition concept to simplify multilevel ZCT converters,” IEEE Transactions on Industry Applications, vol. 42, no. 5, pp. 1310-1320, Sep./Oct. 2006.
    [119]K. H. Chao and C. M. Liaw, “Three-phase soft-switching inverter for induction motor drives,” IEE Proceedings - Electric Power Applications, vol. 148, no. 1, pp. 8-20, Jan. 2001.
    [120]C. T. Pan and Y. L. Juan, “An integrated three-phase ZVS AC/DC converter with soft-switching feature,” Journal of Power Electronics, Taiwan Power Electronics Association, vol. 2, no. 1, pp.59-66, Jan. 2004.

    Parallel Control, Circulating Current Control
    [121]M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2724-2733, Jul. 2008.
    [122]J. M. Guerrero, J. Matas, L. G. de Vicuña, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 994-1004, Apr. 2007.
    [123]T. F. Wu, Y. K. Chen, and Y. H. Huang, “3C strategy for inverters in parallel operation achieving an equal current distribution,” IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 273-281, Apr. 2004.
    [124]C. T. Pan and Y. H. Liao, “Modeling and control of circulating currents for parallel three-phase boost rectifiers with different load sharing,” IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2776-2785, Jul. 2008.
    [125]C. T. Pan and Y. H. Liao, “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp.825-838, Apr. 2007.
    [126]S. H. Li and C. M. Liaw, “Paralleled DSP-based soft switching-mode rectifiers with robust voltage regulation control,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 937-946, Jul. 2004.
    [127]C. M. Liaw, L. C. Jan, W. C. Wu, and S. J. Chiang, “Operation control of paralleled three-phase battery energy storage system,” IEE Proceedings - Electric Power Applications, vol. 143, no. 4, pp. 317-322, Jul. 1996.
    [128]P. T. Cheng, C. C. Hou, and J. S. Li, “Design of an auxiliary converter for the diode rectifier and the analysis of the circulating current,” IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1658-1667, Jul. 2008.

    Differential-Mode and Common-Mode Noise Suppression
    [129]D. Hamza, M. Qiu, and P. K. Jain, “Application and stability analysis of a novel digital active EMI filter used in a grid-tied PV microinverter module,” IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2867-2874, Jun. 2013.
    [130]K. Wada and T. Shimizu, “Reduction methods of conducted EMI noise on parallel operation for AC module inverters,” IEEE 38th Annual Power Electronics Specialists Conference, pp.3016-3021, 2007.
    [131]D. Cochrane, D. Y. Chen, and D. Boroyevic, “Passive cancellation of common-mode noise in power electronic circuits,” IEEE Transactions on Power Electronics, vol. 18, no. 3, pp. 756-763, May 2003.
    [132]S. Wang and F. C. Lee, “Investigation of the transformation between differential-mode and common-mode noises in an EMI filter due to unbalance,” IEEE Transactions on Electromagnetic Compatibility, vol. 52, no. 3, pp. 578-587, Aug. 2010.
    [133]Y. P. Chan, B. M. H. Pong, N. K. Poon, and J. C. P. Liu, “Common-mode noise cancellation in switching-mode power supplies using an equipotential transformer modeling technique,” IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 3, pp. 594-602, Jun. 2012.

    Datasheets, User Manuals
    [134]Siemens SP75 Solar Module Datasheet. [Online]. Available: http://www.solarcellsales.com/techinfo/docs/sp75.pdf.
    [135]Mathematica: User Manual, Wolfram Technologies Inc. [Online]. Available: http://www.wolfram.com/learningcenter/tutorialcollection/MathematicsAndAlgorithms/MathematicsAndAlgorithms.pdf.
    [136]Plecs: Plexim Inc. [Online]. Available: http://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&uact=8&ved=0CCQQFjAA&url=http%3A%2F%2Fwww.plexim.com%2Ffiles%2Fplecsmanual.pdf&ei=RmmHU8XHOYvTkgWy3YGIAw&usg=AFQjCNHZDMW7vaDnz9Oz-UL6VuvnYxSdHQ.
    [137]PSIM: User Manual, Powersim Technologies Inc. [Online]. Available: http://paginas.fe.up.pt/~electro2/labs/psim-manual.pdf.
    [138]LEM LV 25-P Voltage Transducer Datasheet. [Online]. Available: http://www.lem.com/ docs/products/lv%2025-p.pdf.
    [139]LEM LA 25-P Current Transducer Datasheet. [Online]. Available: http://www.lem.com/ docs/products/la%2025-p%20e.pdf.
    [140]HCPL3120 Photo-Coupler Datasheet. [Online]. Available: http://www.tme.eu/es/Document/dde4b33e41c14c71ffd1089c37a0b6d6/HCPL3120.pdf.
    [141]TMS320F2808 Data Manual. Texas Instruments. [Online]. Available: http://www.ti.com/lit/ds/symlink/tms320f2808.pdf.
    [142]TMS320F28335 Data Manual. Texas Instruments. [Online]. Available: http://www.ti.com/lit/ds/sprs439m/sprs439m.pdf.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE