簡易檢索 / 詳目顯示

研究生: 賴人豪
Lai, Ren-Hao
論文名稱: 用於無線通訊之8x8多輸入多輸出解碼器之設計
Design of An 8x8 MIMO Detector for Wireless Communications
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 85
中文關鍵詞: 多輸入多輸出空間多工排列正交三角分解多輸入多輸出解碼器
外文關鍵詞: MIMO, Spatial Multiplexing, Sorted-QR Decomposition, MIMO Detector
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著無線通訊資料傳輸速率需求增高,在傳送端與接收端置放多個天線並使用空間多工 (Spatial multiplexing)是其中一種可以在既定的頻譜範圍內達到此種要求的方法。隨著傳輸容量需求大增,利用增加更多天線數來提高傳輸容量已是趨勢。
    由於高維度多入多輸出系統 (MIMO)的要求增加,排序正交三角分解 (sorted-QR decomposition)前置處理在多輸入多輸出偵測法(QR-based MIMO detection)變成一個計算瓶頸,且MIMO detector的功率消耗與計算複雜度呈現巨幅成長。本論文提出的8x8 MIMO detector可分成兩部份。第一部分提出的Givens-Rotation based演算法利用提早停止排列運算機制和放寬執行排序需要成立的條件,進而改善parallel sorted-QR decomposition的吞吐量以及硬體使用效率。偵測效益下降小到可忽略,且在較大天線數時能達到更好的硬體使用效率。第二部分我們提出 8x8 mixed K-best/QR-SIC MIMO detector利用提出的 modified sorted-QR分解做為前置處理。modified sorted-QR利用放寬執行排序需要成立的條件改善運算時間以及硬體使用效率。相對於K-best detector,在高維度 MIMO detection時,我們提出的 mixed K-best/QR-SIC能夠達到更低的計算複雜度而且幾乎沒有偵測效益的損失。


    Due to the growing demands of high-dimension multiple-input multiple-output (MIMO)
    systems, the preprocessing of sorted-QR decomposition becomes one of the computational
    bottlenecks in the QR-based MIMO detection, and the power consumption and
    computation complexity of the MIMO detector are growing dramatically. This thesis
    proposes an 8 × 8 MIMO detector which can be divided into two parts. First, the
    proposed Givens-Rotation-based algorithm aims to improve the throughput and the
    hardware utilization efficiency by stopping the sorting operations earlier or relaxing the
    sorting condition for the parallel sorted-QR decomposition. The detection performance
    degradation is negligible and better hardware efficiency can be obtained for the larger
    number of the MIMO antennas. Then, we propose an 8 × 8 mixed K-best/QR-SIC detector
    with the proposed modified sorted-QR decomposition as the preprocessing. The
    modified sorted-QR decomposition is used to relax the sorting condition to improve the
    latency and the hardware utilization rate. Compared to the K-best detector, the proposed
    mixed K-best/QR-SIC detector can achieve lower computation complexity with
    almost no performance loss in the high-dimension MIMO detection.

    1 Introduction 1.1 MIMO Technology 1.2 Motivation 1.3 Organization of This Thesis 2 MIMO Detections 2.1 System Model 2.2 MIMO Detectors 2.2.1 Linear and Successive Interference Cancellation(SIC) Detector 2.2.2 Maximum likelihood(ML) detector 2.2.3 Sphere Decoder 2.2.4 K-best Detector 2.3 Sorted-QR Preprocessing 2.3.1 QR Decomposition 2.3.2 Sorted-QR Algorithm 3 Proposed High-Throughput and Low-Latency Sorted-QR Decomposition 3.1 Stopping Criterion for Sorting Operations 3.1.1 SNR Criterion 3.1.2 Eigenvalue Spread Criterion 3.1.3 Other Channel Quality Criterions 3.2 Modified Sorted-QR Decomposition Algorithm for Parallel Processing 4 Architecture Design 4.1 Modified Sorted-QRD 4.2 Mixed K-best/QR-SIC Detector 5 Simulation Results 5.1 Proposed 8 × 8 MIMO Detection Performance 5.2 Word-length Determination 5.3 Performance of the Fixed-Point simulation 6 Conclusion

    [1] IEEE std 802.16e, “Standard for Local and Metropolitan area networks”, Feb. 2006.
    [2] 3GPP TR 25.814 v.1.5, “Physical Layer Aspects for Evolved UTRA (release 7)”,
    May, 2006.
    [3] Q. Li and Z. Wang, “Improved K-Best Sphere Decoding Algorithms for MIMO
    Systems,” in Proc. IEEE International Symp. Circuits and Systems 2006, May 2006,
    pp. 1159–1162.
    [4] H. Lee, H. Jeon, J. Choi, W. Kim, J. Cha, and H. Lee, “A Novel Detection Algorithm
    using the Sorted QR Decomposition based on Log-Likelihood Ratio in V-Blast
    Systems,” in Proc. IEEE International WiCOM 2006, 2006, pp. 1–4.
    [5] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI Implementation
    of a High-Speed Iterative Sorted MMSE QR Decomposition,” in Proc.
    IEEE International Symp. Circuits and Systems 2007, May 2007, pp. 1421–1424.
    [6] K. W. Wang, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow “A VLSI Architecture
    of A K-best Lattice Decoding Algorithm for MIMO Channels,” in Proc. IEEE
    International Symp. Circuits and Systems 2002, May 2002, vol.3 pp. 273–276.
    [7] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A Fixed-Point Implementation for
    QR Decomposition,” in Proc. FPL 2007, 2007.
    [8] E. J. Kontoghiorghes and M. R. B. Clarke, “Stable Parallel Algorithms for Computing
    and Updating the QR Decomposition,” in Proc. IEEE TENCON 2003, 2003,
    pp. 656–659.
    [9] H. L. Lin, H. L. Chen, and R. C. Chang, “JQRPSD Detection with Low-Complexity
    for SDM MIMO Wireless Communication System,” in Proc. IEEE 2007, 2007.
    [10] L. M. Davis, “Scaled and Decoupled Cholesky and QR Decompositions with Application
    to Spherical MIMO Detection,” in Proc. IEEE WCNC 2003, 2003, pp.326–
    331.
    [11] Y. Wang, J. Wang, and Z. Xie, “Parallel MIMO Detection Algorithm Based On
    Householder Transformation,” in Proc. IEEE International Symp. on Intelligent Signal
    Processing and Communication Systems, Dec. 2007, pp. 180–183.
    [12] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, “V-BLAST:
    an architecture for realizing very high data rates over the rich-scattering wireless
    channel,” URSI International Symposium, 29 Sep. -2 Oct. 1998, pp. 295-300.
    [13] R. Bohnke, D. Wubben, V. Kuhn and K. D. Kammeyer, “Reduced Complexity
    MMSE Detection for BLAST Architectures,” in Proc. IEEE GLOBECOM, Dec.
    2003., pp. 2258–2262.
    [14] D. Gore, R. W. H. Jr., and A. Paulraj, “On performance of the zero forcing receiver
    in presence of transmit correlation,” in Proc. IEEE Int. Symp. on Information
    Theory (ISIT), July. 2002, p.159.
    [15] M. O. Damen, H. El Gamal, and G. Caire, “On maximum likelihood detection and
    the search for the closest lattice point,” in IEEE Trans. Inf. Theory, vol. 49, no. 10,
    Oct. 2003, pp. 2389–2402.
    [16] M. Shabany, P. G. Gulak, “Scalable VLSI Architecture for K-Best Lattice Decoders,”
    in Proc. IEEE International Symps. on Circuits and Systems 2008, May.
    2008, pp. 940–943.
    [17] A.Y. Wu and C.S. Wu, “A unified design framework for vector rotational CORDIC
    family based on angle quantization process,” in Proc. IEEE Acoustics, Speech, and
    Signal Processing 2001, May. 2001, pp. 1233–1236.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE