研究生: |
賴人豪 Lai, Ren-Hao |
---|---|
論文名稱: |
用於無線通訊之8x8多輸入多輸出解碼器之設計 Design of An 8x8 MIMO Detector for Wireless Communications |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 多輸入多輸出 、空間多工 、排列正交三角分解 、多輸入多輸出解碼器 |
外文關鍵詞: | MIMO, Spatial Multiplexing, Sorted-QR Decomposition, MIMO Detector |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著無線通訊資料傳輸速率需求增高,在傳送端與接收端置放多個天線並使用空間多工 (Spatial multiplexing)是其中一種可以在既定的頻譜範圍內達到此種要求的方法。隨著傳輸容量需求大增,利用增加更多天線數來提高傳輸容量已是趨勢。
由於高維度多入多輸出系統 (MIMO)的要求增加,排序正交三角分解 (sorted-QR decomposition)前置處理在多輸入多輸出偵測法(QR-based MIMO detection)變成一個計算瓶頸,且MIMO detector的功率消耗與計算複雜度呈現巨幅成長。本論文提出的8x8 MIMO detector可分成兩部份。第一部分提出的Givens-Rotation based演算法利用提早停止排列運算機制和放寬執行排序需要成立的條件,進而改善parallel sorted-QR decomposition的吞吐量以及硬體使用效率。偵測效益下降小到可忽略,且在較大天線數時能達到更好的硬體使用效率。第二部分我們提出 8x8 mixed K-best/QR-SIC MIMO detector利用提出的 modified sorted-QR分解做為前置處理。modified sorted-QR利用放寬執行排序需要成立的條件改善運算時間以及硬體使用效率。相對於K-best detector,在高維度 MIMO detection時,我們提出的 mixed K-best/QR-SIC能夠達到更低的計算複雜度而且幾乎沒有偵測效益的損失。
Due to the growing demands of high-dimension multiple-input multiple-output (MIMO)
systems, the preprocessing of sorted-QR decomposition becomes one of the computational
bottlenecks in the QR-based MIMO detection, and the power consumption and
computation complexity of the MIMO detector are growing dramatically. This thesis
proposes an 8 × 8 MIMO detector which can be divided into two parts. First, the
proposed Givens-Rotation-based algorithm aims to improve the throughput and the
hardware utilization efficiency by stopping the sorting operations earlier or relaxing the
sorting condition for the parallel sorted-QR decomposition. The detection performance
degradation is negligible and better hardware efficiency can be obtained for the larger
number of the MIMO antennas. Then, we propose an 8 × 8 mixed K-best/QR-SIC detector
with the proposed modified sorted-QR decomposition as the preprocessing. The
modified sorted-QR decomposition is used to relax the sorting condition to improve the
latency and the hardware utilization rate. Compared to the K-best detector, the proposed
mixed K-best/QR-SIC detector can achieve lower computation complexity with
almost no performance loss in the high-dimension MIMO detection.
[1] IEEE std 802.16e, “Standard for Local and Metropolitan area networks”, Feb. 2006.
[2] 3GPP TR 25.814 v.1.5, “Physical Layer Aspects for Evolved UTRA (release 7)”,
May, 2006.
[3] Q. Li and Z. Wang, “Improved K-Best Sphere Decoding Algorithms for MIMO
Systems,” in Proc. IEEE International Symp. Circuits and Systems 2006, May 2006,
pp. 1159–1162.
[4] H. Lee, H. Jeon, J. Choi, W. Kim, J. Cha, and H. Lee, “A Novel Detection Algorithm
using the Sorted QR Decomposition based on Log-Likelihood Ratio in V-Blast
Systems,” in Proc. IEEE International WiCOM 2006, 2006, pp. 1–4.
[5] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, “VLSI Implementation
of a High-Speed Iterative Sorted MMSE QR Decomposition,” in Proc.
IEEE International Symp. Circuits and Systems 2007, May 2007, pp. 1421–1424.
[6] K. W. Wang, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow “A VLSI Architecture
of A K-best Lattice Decoding Algorithm for MIMO Channels,” in Proc. IEEE
International Symp. Circuits and Systems 2002, May 2002, vol.3 pp. 273–276.
[7] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A Fixed-Point Implementation for
QR Decomposition,” in Proc. FPL 2007, 2007.
[8] E. J. Kontoghiorghes and M. R. B. Clarke, “Stable Parallel Algorithms for Computing
and Updating the QR Decomposition,” in Proc. IEEE TENCON 2003, 2003,
pp. 656–659.
[9] H. L. Lin, H. L. Chen, and R. C. Chang, “JQRPSD Detection with Low-Complexity
for SDM MIMO Wireless Communication System,” in Proc. IEEE 2007, 2007.
[10] L. M. Davis, “Scaled and Decoupled Cholesky and QR Decompositions with Application
to Spherical MIMO Detection,” in Proc. IEEE WCNC 2003, 2003, pp.326–
331.
[11] Y. Wang, J. Wang, and Z. Xie, “Parallel MIMO Detection Algorithm Based On
Householder Transformation,” in Proc. IEEE International Symp. on Intelligent Signal
Processing and Communication Systems, Dec. 2007, pp. 180–183.
[12] P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela, “V-BLAST:
an architecture for realizing very high data rates over the rich-scattering wireless
channel,” URSI International Symposium, 29 Sep. -2 Oct. 1998, pp. 295-300.
[13] R. Bohnke, D. Wubben, V. Kuhn and K. D. Kammeyer, “Reduced Complexity
MMSE Detection for BLAST Architectures,” in Proc. IEEE GLOBECOM, Dec.
2003., pp. 2258–2262.
[14] D. Gore, R. W. H. Jr., and A. Paulraj, “On performance of the zero forcing receiver
in presence of transmit correlation,” in Proc. IEEE Int. Symp. on Information
Theory (ISIT), July. 2002, p.159.
[15] M. O. Damen, H. El Gamal, and G. Caire, “On maximum likelihood detection and
the search for the closest lattice point,” in IEEE Trans. Inf. Theory, vol. 49, no. 10,
Oct. 2003, pp. 2389–2402.
[16] M. Shabany, P. G. Gulak, “Scalable VLSI Architecture for K-Best Lattice Decoders,”
in Proc. IEEE International Symps. on Circuits and Systems 2008, May.
2008, pp. 940–943.
[17] A.Y. Wu and C.S. Wu, “A unified design framework for vector rotational CORDIC
family based on angle quantization process,” in Proc. IEEE Acoustics, Speech, and
Signal Processing 2001, May. 2001, pp. 1233–1236.