研究生: |
曾郁閔 Tseng,Yu Min |
---|---|
論文名稱: |
1,3-二氯丙醇-水雙成分系統之汽液與液液相平衡研究 VLE and LLE for the binary system of 1,3-dichloro-2-propanol and water |
指導教授: |
鄭西顯
Jang,Shi Shang |
口試委員: |
汪上曉
王聖潔 錢義隆 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 1,3-二氯丙醇 、共沸物 、熱力學一致 、相平衡 、液液平衡 、氣液平衡 |
外文關鍵詞: | 1,3-dichlorohydrin, azeotrope, thermodynamic consistency, phase equilibrium, liquid-liquid equilibrium, vapor-liquid equilirium |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副近年來,隨著生物 柴油迅速發展其產過程中的副甘油 大量增加, 大量增加, 使 其成本大幅下降,因此 其成本大幅下降,因此 其成本大幅下降,因此 以甘油為原料生成二氯丙醇的 製程 受到 格外 關注, 關注, 而此製 程的熱力學模式與參數大多無法從過去文獻之實驗據得到, 程的熱力學模式與參數大多無法從過去文獻之實驗據得到, 因此本論文 因此本論文 對此 製程 進行熱力學方面的分析與 探討 ,並著手於 ,並著手於 熱力學相平衡實驗 以增加製程模擬 使用之熱力學模型的適性。
甘油氯化生成二丙醇製程有與水此非均勻相共沸物 的存在 ,其的存在 ,其的存在 ,其相平衡系統中的分布會影響製程設計準確性,因此需有較之熱力學數據以 相平衡系統中的分布會影響製程設計準確性,因此需有較之熱力學數據以 相平衡系統中的分布會影響製程設計準確性,因此需有較之熱力學數據以 相平衡系統中的分布會影響製程設計準確性,因此需有較之熱力學數據以 對製程進行完善設計。 對製程進行完善設計。 故本研究 針對水 及 1,3 -二氯丙醇雙成份系統進行汽液 與液相 平衡實驗,所得之 平衡實驗,所得之 平衡實驗,所得之 汽液 平衡實驗數據以熱力學 一致性 進行 測試 ,接著將 ,接著將 實驗 數據進一步以 Aspen Aspen模擬軟體 模擬軟體 內的 NRTL NRTLNRTL液相 模式 進行 數據迴歸, 數據迴歸, 以得 到最佳 熱 力學 參數 。
實驗結果顯示 1,3 -二氯丙醇 -水雙成分系統 有非均勻相共沸物的存在,且其 非均勻相共沸物的存在,且其 非均勻相共沸物的存在,且其 相對於 拉午耳理想溶液呈現正偏差, 拉午耳理想溶液呈現正偏差, 所量取之雙成分汽液相平衡數據 所量取之雙成分汽液相平衡數據 以熱力學一 致性之 面積法 確認通過。 通過。 將實驗測得之 汽液與相平衡數據 數據 以 NRTL NRTLNRTL模式 進行迴歸 ,迴歸結果顯示, 迴歸結果顯示, 迴歸結果顯示, 汽液平衡 有良好的吻合性,液平衡 良好的吻合性,液平衡 良好的吻合性,液平衡 良好的吻合性,液平衡 則在 有機相存則在 有機相存偏
Recently, the strong growth of biodiesel production has determined the availability of a great amount of the byproduct glycerol, resulting in a direct process to prepare 1,3-DCH consisting of the chlorination of glycerol with hydrochloric acid was developed. Most of the thermodynamic parameters of this process could not be obtained from the literature. Therefore, this study embarked on the thermodynamic equilibrium experiments in order to increase the applicability of the process simulations.
The process of the glycerol chlorination existed in the binary azeotrope of 1,3-DCH and water, which would affect the accuracy of the design process. Therefore, it needed more accurate thermodynamic data to design the process completely.
In this work, the vapor-liquid equilibrium and liquid-liquid equilibrium data for the binary system of 1,3-DCH and water were conducted in a modified Othmer type equilibrium still at atmospheric pressure. The experimental results exhibited azeotropic behavior and positive deviations from Raoult’s law. The thermodynamic consistency of the new binary VLE data had been confirmed by the area tests. The measured VLE and LLE data were regressed by the activity coefficient model of NRTL. Our regressed results showed that the correlation by the NRTL model was in good agreement with the experimental data for VLE. And for LLE, the deviation existed in experimental data of organic phase
[1]S. Han, H. Lin, and K. Chao, "Vapor-liquid equilibrium of molecular fluid mixtures by equation of state," Chemical Engineering Science, vol. 43, pp. 2327-2367, 1988.
[2]B. M. Bell, J. R. Briggs, R. M. Campbell, S. M. Chambers, P. D. Gaarenstroom, J. G. Hippler,"Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process," CLEAN–Soil, Air, Water, vol. 36, pp. 657-661, 2008.
[3]S. Abu-El-Haj, M. J. Bogusz, Z. Ibrahim, H. Hassan, and M. Al Tufail, "Rapid and simple determination of chloropropanols (3-MCPD and 1, 3-DCP) in food products using isotope dilution GC–MS," Food Control, vol. 18, pp. 81-90, 2007.
[4]S. Carra, E. Santacesaria, M. Morbidelli, P. Schwarz, and C. Divo, "Synthesis of epichlorohydrin by elimination of hydrogen chloride from chlorohydrins. 1. Kinetic aspects of the process," Industrial & Engineering Chemistry Process Design and Development, vol. 18, pp. 424-427, 1979.
[5]L. Ma, J. Zhu, X. Yuan, and Q. Yue, "Synthesis of epichlorohydrin from dichloropropanols: Kineticaspects of the process," Chemical Engineering Research and Design, vol. 85, pp. 1580-1585, 2007.
[6]S. Carra, E. Santacesaria, M. Morbidelli, P. Schwarz, and C. Divo, "Synthesis of Epichlorohydrin by Elimination of Hydrogen-Chloride from Chlorohydrins .2. Simulation of the Reaction Unit," Industrial & Engineering Chemistry Process Design and Development, vol. 18, pp. 428-433, 1979.
[7]宗敏, 蒋惠亮, 方银军, and 任国晓, "环氧氯丙烷的合成," 精细石油化工, vol. 24, pp. 32-35, 2007.
[8]J. Van Gerpen, "Biodiesel processing and production," Fuel processing technology, vol. 86, pp. 1097-1107, 2005.
[9]W. Xie, H. Peng, and L. Chen, "Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst," Applied Catalysis A: General, vol. 300, pp. 67-74, 2006.
[10]S. H. Lee, D. R. Park, H. Kim, J. Lee, J. C. Jung, S. Y. Woo,"Direct preparation of dichloropropanol (DCP) from glycerol using heteropolyacid (HPA) catalysts: A catalyst screen study," Catalysis Communications, vol. 9, pp. 1920-1923, 2008.
[11]"German Patent Nr. 197309," 1906.
[12]"German Patent Nr. 238341," 1908.
[13]P. Krafft, P. Gilbeau, B. Gosselin, and S. Claessens, "Process for producing dichloropropanol from glycerol, the glycerol coming eventually from the conversion of animal fats in the manufacture of biodiesel,"U.S. Patent No.8,415,509. 9 Apr. 2013.
[14]P. Krafft, P. Gilbeau, and D. Balthasart, "Crude glycerol-based product, process for its purification and its use in the manufacture of dichloropropanol," U.S. Patent No. 8,124,814. 28 Feb. 2012.
[15]S. Lee, S. Song, D. Park, J. Jung, J. Song, S. Woo, "Solvent-free direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in the presence of H3PMo12−XWXO40 catalyst and/or water absorbent," Catalysis Communications, vol. 10, pp. 160-164, 2008.
[16]S. H. Song, S. H. Lee, D. R. Park, H. Kim, S. Y. Woo, W. S. Song, "Direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in a solvent-free batch reactor: Effect of experimental conditions," Korean Journal of Chemical Engineering, vol. 26, pp. 382-386, 2009.
[17]R. Tesser, E. Santacesaria, M. Di Serio, G. Di Nuzzi, and V. Fiandra, "Kinetics of glycerol chlorination with hydrochloric acid: A newroute to α, γ-dichlorohydrin," Industrial & Engineering Chemistry Research, vol. 46, pp. 6456-6465, 2007.
[18]Z.-H. Luo, X.-Z. You, and H.-R. Li, "Direct preparation kinetics of 1, 3-dichloro-2-propanol from glycerol using acetic acid catalyst," Industrial & Engineering Chemistry Research, vol. 48, pp. 446-452, 2008.
[19]Z.-H. Luo, X.-Z. You, and H.-R. Li, "A kinetic model for glycerol chlorination in the presence of acetic acid catalyst," Korean journal of chemical engineering, vol. 27, pp. 66-72, 2010.
[20]D. F. Othmer, R. E. White, and E. Trueger, "Liquid-liquid extraction data," Industrial & Engineering Chemistry, vol. 33, pp. 1240-1248, 1941.
[21]H. Renon and J. M. Prausnitz, "Local compositions in thermodynamic excess functions for liquid mixtures," AIChE journal, vol. 14, pp. 135-144, 1968.
[22]E. Herington, "Tests for the consistency of experimental isobaric vapor-liquid equilibrium data," J. Inst. Petrol, vol. 37, pp. 457-470, 1951.
[23]A. Fredenslund, H. K. Hansen, P. Rasmussen, M. Schiller, and J. Gmehling, "Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension," Industrial & Engineering Chemistry Research, vol. 30, pp. 2352-2355, 1991.
[24]H. C. Van Ness, S. M. Byer, and R. E. Gibbs, "Vapor‐Liquid equilibrium: PartI. An appraisal of data reduction methods," AIChE Journal, vol. 19, pp. 238-244, 1973.
[25]H. M. Moon, K. Ochi, and K. Kojima, "Thermodynamic consistency test of vapor—liquid equilibrium data—alcohol—hydrocarbon systems," Fluid Phase Equilibria, vol. 62,pp. 29-40, 1991.
[26]K. Kurihara, M. Nakamichi, and K. Kojima, "Isobaric vapor-liquid equilibria for methanol+ ethanol+ water and the three constituent binary systems," Journal of Chemical and Engineering Data, vol. 38, pp. 446-449, 1993.
[27]R. Stephenson and J. Stuart, "Mutual binary solubilities: water-alcohols and water-esters," Journal of Chemical and Engineering Data, vol. 31, pp. 56-70, 1986.
[28]T. Anderson, D. Abrams, and E. Grens, "Evaluation of parameters for nonlinear thermodynamic models," AIChE Journal, vol. 24, pp. 20-29, 1978.
[29]J. Prausnitz and T. Anderson, "Application of the UNIQUAC equation to calculation of multicomponent phase equilibria. 1. Vapor-liquid equilibria," Industrial & Engineering Chemistry Process Design and Development, vol. 17, pp. 552-561, 1978.
[30]J. Wisniak, "The Herington test for thermodynamic consistency," Industrial & Engineering Chemistry Research, vol. 33, pp. 177-180, 1994.