研究生: |
陳劭墉 Chen, Shao-Yong. |
---|---|
論文名稱: |
光刺激發光指環劑量計之光子特性評估與驗證 Research on Photon Characteristic Evaluation and Verification of Optically Stimulated Luminescence Ring Dosimeter |
指導教授: |
許靖涵
Hsu, Ching-Han 許芳裕 Hsu, Fang-Yuh |
口試委員: |
陳拓榮
Chen, Tou-Rong 游澄清 Yu, Cheng-Ching |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 光刺激發光劑量計 、氧化鋁 、氧化鈹 |
外文關鍵詞: | Optical Stimulation Luminescence Dosimeter, Al2O3:C, BeO |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今最常見的商用光刺激發光劑量計(OSLD)材料為Al2O3:C,此材料於低能量光子場下會有能量依存性的問題,因此本論文利用自製雙晶片指環劑量計來克服能量依存性誤差,先以蒙地卡羅模擬不同光子能量下的響應,並透過實際照射不同能量射質的X-ray來驗證雙晶片系統能有效修正誤差。另外,本論文也將自製的指環劑量計搭配近期新興的商業性材料BeO一同測試,模擬結果顯示BeO的能量依存性很低,並透過實際照射以驗證模擬結果之準確性。Al2O3:C於特性實驗中可歸納出其再現性與均勻性偏差程度不大,幾乎於±10%之內,使用自製計讀儀亦可達到重複計讀的效果。而BeO的部分,再現性幾乎於±2%以內,其均勻性浮動程度較大可透過個別校正來克服。此外,BeO於重複計讀方面的效果較差,但可透過定量的訊號衰減程度修正計數值。整體結果分析,兩種材料於自製的指環系統中均能有效的評估手部劑量。
關鍵字:光刺激發光劑量計、氧化鋁、氧化鈹
At present, The most common commercial optical stimulation luminescence dosimeter (OSLD) material is Al2O3:C. The energy dependence cannot neglect in low-energy photon fields for Al2O3:C material. Therefore, this study used a homemade dual-chip ring dosimeter to correct the energy dependence effect. First, Monte Carlo simulation was used to simulate the OSLD dose responses in the different photon energies, and verified by means of actually irradiating X-rays with different energy radiation qualities to the dual-chip system. In addition, this study also used the homemade ring with BeO dosimeter inside, which is a new commercial material developed in recent years. The simulation results verified that the energy dependence of BeO is very low, and the simulation results was verified through actual irradiation experiments. Al2O3:C can be concluded in the characteristic experiments that its reproducibility and homogeneity deviations are not large, almost both within ±10%. The homemade reader system proved the ability of repeated reading of Al2O3:C OSLD. For BeO, the reproducibility is almost within ±2%, and the degree of homogeneity fluctuation can be overcome by individual correction. The effect of repeated reading ability is not good, however, by means of the quantitative signal attenuation counting value can be corrected. In conclusion, both Al2O3:C and BeO OSLD materials can effectively evaluate the hand dose in the homemade ring system.
Keywords: Optical Stimulation Luminescence Dosimeter, Al2O3:C, BeO
1.Clarke, R., et al., 1990 recommendations of the International Commission on Radiological Protection. Documents of the NRPB, 1993. 4(1): p. 1-5.
2.Vanhavere, F., et al., An overview on extremity dosimetry in medical applications. Radiat Prot Dosimetry, 2008. 129(1-3): p. 350-5.
3.Yukihara, E.G. and S.W. McKeever, Optically stimulated luminescence: fundamentals and applications. 2011: John Wiley & Sons.
4.Jursinic, P.A., Changes in optically stimulated luminescent dosimeter (OSLD) dosimetric characteristics with accumulated dose. Med Phys, 2010. 37(1): p. 132-40.
5.Bøtter-Jensen, L., et al., Al2O3: C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates. Radiation Measurements, 1997. 27(2): p. 295-298.
6.Bulur, E. and H. Göksu, OSL from BeO ceramics: new observations from an old material. Radiation measurements, 1998. 29(6): p. 639-650.
7.Dornich, K., et al., myOSL – A NEW SERIES OF PORTABLE AND STATIONARY EQUIPMENT FOR OSL-DOSIMETRY BASED ON BeO, in RAD Conference Proceedings. 2019.
8.Chen, L.-Y., C.-H. Hsu, and F.-Y. Hsu, Development and efficacy testing of a new optically stimulated luminescence ring dosimeter and algorithm. Radiation Measurements, 2019. 124: p. 109-115.
9.Murty, R., Effective atomic numbers of heterogeneous materials. Nature, 1965. 207(4995): p. 398-399.
10.Taylor, M.L., et al., Robust calculation of effective atomic numbers: the Auto-Z(eff) software. Med Phys, 2012. 39(4): p. 1769-78.
11.Khabaz, R. and H.R. Vega-Carrillo, Assessment of Kerma coefficients for OSL dosimeters by analytical and Monte Carlo approaches. Radiation Physics and Chemistry, 2020. 173.
12.Sommer, M., R. Freudenberg, and J. Henniger, New aspects of a BeO-based optically stimulated luminescence dosimeter. Radiation Measurements, 2007. 42(4-5): p. 617-620.
13.Huntley, D.J., D.I. Godfrey-Smith, and M.L. Thewalt, Optical dating of sediments. Nature, 1985. 313(5998): p. 105-107.
14.Akselrod, M., et al., Highly sensitive thermoluminescent anion-defective alpha-Al203: C single crystal detectors. Radiation Protection Dosimetry, 1990. 32(1): p. 15-20.
15.McKeever, S. and M. Moscovitch, On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiation protection dosimetry, 2003. 104(3): p. 263-270.
16.Bøtter-Jensen, L., S.W. McKeever, and A.G. Wintle, Optically stimulated luminescence dosimetry. 2003: Elsevier.
17.Yukihara, E.G., A review on the OSL of BeO in light of recent discoveries: The missing piece of the puzzle? Radiation Measurements, 2020. 134.
18.吳東燁,“光刺激發光指環劑量計之劑量演算法研究”,國立清華大學碩士論文,2012。
19.Raychaudhuri, S. Introduction to monte carlo simulation. in 2008 Winter simulation conference. 2008. IEEE.
20.Hoedlmoser, H., et al., Simulation of Osl and Tld Dosemeter Response for the Development of New Extremity Dosemeters. Radiat Prot Dosimetry, 2019. 185(2): p. 222-230.
21.Publ, I., Conversion coefficients for use in radiological protection against external radiation. Ann. ICRP, 1996. 26: p. 3-4.
22.Shen, S., et al., Reproducibility of operator processing for radiation dosimetry. Nuclear medicine and biology, 1997. 24(1): p. 77-83.
23.Akselrod, M. and S. McKeever, A radiation dosimetry method using pulsed optically stimulated luminescence. Radiation Protection Dosimetry, 1999. 81(3): p. 167-175.
24.Sommer, M. and J. Henniger, Investigation of a BeO-based optically stimulated luminescence dosemeter. Radiat Prot Dosimetry, 2006. 119(1-4): p. 394-7.
25.Currie, L.A., Limits for qualitative detection and quantitative determination. Application to radiochemistry. Analytical chemistry, 1968. 40(3): p. 586-593.
26.Currie, L.A., Detection and quantification limits: origins and historical overview. Analytica Chimica Acta, 1999. 391(2): p. 127-134.
27.Knoll, G.F., Radiation detection and measurement. 2010: John Wiley & Sons.
28.Lai, L.-H., et al., Optically stimulated luminescence radiation response of Au/Al 2 O 3 phosphors. Radiation Physics and Chemistry, 2017. 140: p. 61-67.
29.Schembri, V. and B.J. Heijmen, Optically stimulated luminescence (OSL) of carbon-doped aluminum oxide (Al2O3:C) for film dosimetry in radiotherapy. Med Phys, 2007. 34(6): p. 2113-8.