研究生: |
林孟緯 Lin, Meng-Wei. |
---|---|
論文名稱: |
波前傾斜兆赫波參量放大器 Terahertz parametric amplifier with wavefront tilted pump |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
施宙聰
Shy, Jow-Tsong 陳彥宏 Chen, Yen-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 兆赫波 、參量放大器 、波前傾斜 |
外文關鍵詞: | Terahertz, Parametric amplifier, Wavefront tilting |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波長可調且窄頻的兆赫波可以用於化學指紋分子識別相關的光學量測,兆赫波參量放大器可以在室溫下產生窄頻的兆赫波。本論文主要探討在進行兆赫波參量放大器時所需設備之原理及增強兆赫波之方法。本實驗使用波長為1064 nm、脈衝寬度為10皮秒且重覆率為54 MHz的鎖模雷射進行放大,經過Nd:YAG再生放大器放大後得到重覆率為10 Hz且具有700 μJ能量的脈衝,這些高能量的脈衝便成為兆赫波參量放大器的泵浦光源。本實驗使用厚度1 mm的KTP作為非線性波長轉換晶體,在兆赫波參量產生的狀況下,由於受激電磁耦子散射,會產生1086 nm波段的Stokes訊號。為了達到波長可調與窄頻的目的,我們架設了波長可調的外腔二極體雷射作為種子光源。此外,還使用了波前傾斜技術來增加轉換效率。最終產生了脈衝能量78 μJ的一階Stokes波和34 μJ的二階Stokes波。
It is generally believed that a wavelength-tunable and narrow-band terahertz wave can perform optical inspections such as chemical fingerprint detections. A terahertz parametric amplifier can generate a narrow-band terahertz wave at room temperature. My thesis will firstly discuss how a terahertz parametric amplifier (TPA) is driven by a wavefront-tilted pump laser. A mode-locked laser, which has a 1064-nm wavelength, 10-ps pulsewidth, and 54-MHz repetition rate, is first amplified by a regenerative amplifier. The amplified pulse has 700 μJ energy, and repeats at a 10-Hz rate. The high energy pulse is a pump source for TPA. The crystal used is KTP with a thickness of 1 mm. When performing terahertz parametric generation via stimulated polariton scattering, a Stokes wave with 1086 nm wavelength will be generated. To achieve narrow band and tunable wavelength, an external cavity diode laser was built as a seed source for TPA. Additionally, the wavefront of the pump wave was tilted so as to achieve group velocity matching and therefore improve the efficiency. As the result indicates, the first-order Stokes wave with 78 μJ energy can be generated and second-order Stokes waves with 36 μJ energy from the TPA crystal.
1. Ferguson, B., & Zhang, X. C. (2002). Materials for terahertz science and technology. Nature materials, 1(1), 26-33.
2. Hosako, I., Sekine, N., Patrashin, M., Saito, S., Fukunaga, K., Kasai, Y., ... & Yasuda, H. (2007). At the dawn of a new era in terahertz technology. Proceedings of the IEEE, 95(8), 1611-1623.
3. Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature photonics, 1(2), 97-105.
4. Dhillon, S. S., Vitiello, M. S., Linfield, E. H., Davies, A. G., Hoffmann, M. C., Booske, J., ... & Castro-Camus, E. (2017). The 2017 terahertz science and technology roadmap. Journal of Physics D: Applied Physics, 50(4), 043001.
5. Kawase, K., Ogawa, Y., Watanabe, Y., & Inoue, H. (2003). Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Optics express, 11(20), 2549-2554.
6. Shen, Y. C., Lo, A. T., Taday, P. F., Cole, B. E., Tribe, W. R., & Kemp, M. C. (2005). Detection and identification of explosives using terahertz pulsed spectroscopic imaging. Applied Physics Letters, 86(24), 241116.
7. Kato, M., Tripathi, S. R., Murate, K., Imayama, K., & Kawase, K. (2016). Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection. Optics express, 24(6), 6425-6432.
8. Slocum, D. M., Slingerland, E. J., Giles, R. H., & Goyette, T. M. (2013). Atmospheric absorption of terahertz radiation and water vapor continuum effects. Journal of Quantitative Spectroscopy and Radiative Transfer, 127, 49-63.
9. Van Exter, M., Fattinger, C., & Grischkowsky, D. (1989). Terahertz time-domain spectroscopy of water vapor. Optics letters, 14(20), 1128-1130.
10. Hafez, H. A., Chai, X., Ibrahim, A., Mondal, S., Férachou, D., Ropagnol, X., & Ozaki, T. (2016). Intense terahertz radiation and their applications. Journal of Optics, 18(9), 093004.
11. Wang, T. D., Huang, Y. C., Chuang, M. Y., Lin, Y. H., Lee, C. H., Lin, Y. Y., ... & Kitaeva, G. K. (2013). Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain. Optics express, 21(2), 2452-2462.
12. Huang, Y. C., Wang, T. D., Lin, Y. H., Lee, C. H., Chuang, M. Y., Lin, Y. Y., & Lin, F. Y. (2011). Forward and backward THz-wave difference frequency generations from a rectangular nonlinear waveguide. Optics express, 19(24), 24577-24582.
13. Tomasino, A., Parisi, A., Stivala, S., Livreri, P., Cino, A. C., Busacca, A. C., ... & Morandotti, R. (2013). Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling. Scientific reports, 3, 3116.
14. Fülöp, J. A., Ollmann, Z., Lombosi, C., Skrobol, C., Klingebiel, S., Pálfalvi, L., ... & Hebling, J. (2014). Efficient generation of THz pulses with 0.4 mJ energy. Optics express, 22(17), 20155-20163.
15. Auston, D. H., Cheung, K. P., & Smith, P. R. (1984). Picosecond photoconducting Hertzian dipoles. Applied physics letters, 45(3), 284-286.
16. Kim, K. J., & Kumar, V. (2007). Electron beam requirements for a three-dimensional Smith-Purcell backward-wave oscillator for intense terahertz radiation. Physical Review Special Topics-Accelerators and Beams, 10(8), 080702.
17. He, W., Donaldson, C. R., Zhang, L., Ronald, K., McElhinney, P., & Cross, A. W. (2013). High power wideband gyrotron backward wave oscillator operating towards the terahertz region. Physical review letters, 110(16), 165101.
18. Kulipanov, G. N., Gavrilov, N. G., Knyazev, B. A., Kolobanov, E. I., Kotenkov, V. V., Kubarev, V. V., ... & Ovchar, V. K. (2008). Research highlights from the Novosibirsk 400 W average power THz FEL. Terahertz Sci. Technol, 1(2), 107-125.
19. Hayashi, S. I., Nawata, K., Taira, T., Shikata, J. I., Kawase, K., & Minamide, H. (2014). Ultrabright continuously tunable terahertz-wave generation at room temperature. Scientific reports, 4, srep05045.
20. Kawase, K., Shikata, J. I., & Ito, H. (2002). Terahertz wave parametric source. Journal of Physics D: Applied Physics, 35(3), R1.
21. Wu, M. H., Chiu, Y. C., Wang, T. D., Zhao, G., Zukauskas, A., Laurell, F., & Huang, Y. C. (2016). Terahertz parametric generation and amplification from potassium titanyl phosphate in comparison with lithium niobate and lithium tantalate. Optics express, 24(23), 25964-25973.
22. Stepanov, A. G., Hebling, J., & Kuhl, J. (2003). Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts. Applied physics letters, 83(15), 3000-3002.
23. Yeh, K. L., Hoffmann, M. C., Hebling, J., & Nelson, K. A. (2007). Generation of 10 μ J ultrashort terahertz pulses by optical rectification. Applied Physics Letters, 90(17), 171121.
24. Hebling, J., Yeh, K. L., Hoffmann, M. C., Bartal, B., & Nelson, K. A. (2008). Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. JOSA B, 25(7), B6-B19.
25. Murray, J. E., & Lowdermilk, W. H. (1980). Nd: YAG regenerative amplifier. Journal of Applied Physics, 51(7), 3548-3556.
26. Lowdermilk, W. H., & Murray, J. E. (1980). The multipass amplifier: Theory and numerical analysis. Journal of Applied Physics, 51(5), 2436-2444.
27. 张若凡, 韦辉, 王江峰, 范薇, & 李学春. (2013). 高稳定性半导体激光侧面抽运 Nd: YAG300Hz 再生放大器. 中国激光, (10), 70-76.
28. Kawase, K., Ogawa, Y., Minamide, H., & Ito, H. (2005). Terahertz parametric sources and imaging applications. Semiconductor science and technology, 20(7), S258.
29. Sussman, S. S. (1970). Tunable light scattering from transverse optical modes in lithium niobate (No. SU-MLR-1851). STANFORD UNIV CA MICROWAVE LAB.
30. Hebling, J., Yeh, K. L., Hoffmann, M. C., Bartal, B., & Nelson, K. A. (2008). Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. JOSA B, 25(7), B6-B19.
31. Liu, K., & Littman, M. G. (1981). Novel geometry for single-mode scanning of tunable lasers. Optics Letters, 6(3), 117-118.
32. Fleming, M., and Aram Mooradian. "Spectral characteristics of external-cavity controlled semiconductor lasers." IEEE Journal of Quantum Electronics 17.1 (1981): 44-59.