研究生: |
張軼峯 Chang, Yi-Feng |
---|---|
論文名稱: |
液靜壓複合式節流器設計—輔以類神經網路之決策 Design of a Hybrid Flow Restrictor for Hydrostatic Bearings Using Artificial Neural Network |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
林士傑
Lin, Shih-Chieh 蕭德瑛 Shaw, Dein |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 液靜壓軸承 、複合式節流器 、類神經網路 |
外文關鍵詞: | Hydrostatic bearing, Flow restrictor, Artificial neural network |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討複合式節流器之設計原理與方法,藉由理論分析複合式節流器的工作原理,並利用程式模擬複合式節流器與軸承系統中不同流阻比之性能表現,再以現有液靜壓實驗平台進行實驗驗證,探討其不同參數之間的關係。首先使用基本方法驗證、作圖,接著使用預處理過的數據來訓練類神經網路,並輸出預測結果。文中基於實驗結果,利用類神經網路所建構出的數學模型,來輔助冗長、非線性、難以驗證的物理、數學推導,試圖為液靜壓軸承節流器最佳化之設計與分析提出新的方法與工具;且可利用類神經網路之模型與物理模型針對設計參數與機械性能交互比對、驗證兩者之正確性。
本研究利用類神經網路模型,不僅能夠達到預測液靜壓軸承系統搭配不同節流器時,隨著負載、供油壓力、油溫等參數變化時其他相應參數的可能變化,並依此結果得到節流器幾何之新設計值;有別於目前工業大數據中機器學習等工具,皆大多應用於監測機器、機台之健康狀態,預估保養時程及元件耗損、更換時間等,期待本論文研究之結果能向上推展,實際應用在精密機械的設計階段,支援CPS智能決策系統,並提供智慧化機台的更多可能性,以期達成工業4.0之願景。
The flow restrictor, one of the critical elements of hydrostatic bearings, provides the self-adjusting capability of pocket pressure and stiffness. With the increasing usage of hydrostatic bearings, reliability requirements for flow restrictors have become more crucial.
The purpose of this thesis is to provide a useful method to analyze and optimize the dimension, preload, stiffness and various design parameters of flow restrictors. The method to carry out this study is using artificial neural network (ANN) models. By using feedforward neural network, the ANNs are capable of estimating any function by massively connecting appropriate number of neurons and different kinds of layers. After data preprocessing and cross-validation, the network is more stable and workable for our system with non-linear characteristic.
In this thesis the function of fluid restrictors affecting the performance of hydrostatic bearings is investigated both theoretically and experimentally. An apparatus is constructed, which integrates a sliding hydrostatic table with several flow restrictor connectors. With these connectors, various kinds of restrictors such as capillary or membrane type restrictor are assembled and installed due to individual requirements. Furthermore, the pressure, flow and temperature of each pad are measured on-line simultaneously.
Since limited experimental measurements are available to illustrate the properties and interaction between various parameters, and additionally, the theoretical derivation is complicated, non-linear and hard to be verified, the proposed neural network structure is demonstrated very suitable to model the flow restrictor design problem. By means of a well-trained network, the design parameters and the data with the uncertainty of the derivation had been successfully correlated.
[1] Girard, L. D., 1862, Application des Surfaces Glissantes, Bachelier, Paris.
[2] Malanoski Telingater, V. S., 1972, “Hydrostatic Slideways Using Standard Bearings, ” Machines and Tooling. Vol.43, No.2, pp.15-20.
[3] O’Donoghue, J. P., 1972, “Parallel Orifice and Capillary Control for Hydrostatic Journal bearings,” Tribology International Vol. 5, pp.81-82
[4] Sharma, S. C., Sinhasan, R., Jain, S. C., Singh, N., and Singh, S. K., 1998, “Performance of Hydrostatic/Hybrid Journal Bearings with Unconventional Recess Geometries,” Tribology Transactions Vol.41, pp.375-381.
[5] Ling, T. S., 1962, “On the Optimization of the Stiffness of Externally Pressurized Bearings,” Trans. ASME. J. Basic Eng. Vol. 84, pp.119-122.
[6] 程瑾文, 2017, “泛用型虛實整合系統架構建立—以液靜壓節流器之調整為驗證載具.” 國立清華大學動力機械系碩士論文。
[7] 黃華志, 2009 , “液靜壓軸承技術清大演講, ”工研院機械所.
[8] Mohsin, M. E., 1963, “The Use of Controlled Restrictors for Compensating Hydrostatic Bearing,” Third International Conference on Machine Tool Design Research pp.129-424.
[9] Rowe W. B., 1976, Hydrostatic Bearing Patent Application no.51919/67. Publish 15th November170 (1):602. Assigned to Wickman Ltd.
[10] Rowe W. B. , 1969, Hydrostatic bearing patent application no.22072/66. Publish 15th November 170 (1):602. Assigned to Wickman Ltd.
[11] Rowe, W. B. and O’Donoghue, J.P., 1970, “Diaphragm Valves for Controlling Opposed Pad Hydrostatic Bearing,” Proc. I. E. Tribology. Vol.184, pp.1-9.
[12] Moris, S. A., 1972, “Passively and Actively Controlled Externally Pressurized Oil-film Bearing, ” Trans. ASME. Ser. F, Vol. 94,
[13] Mayer, J. E. and Shaw, M. C., 1963, “Characteristics of Externally Pressurized Bearing Having Variable External Flow Restrictors,” ASEM Journal of Basic Engineering, Vol. 85, pp.291
[14] Osumi T., Mori H., Ikeuchi K., 1985, “Effects of Stabilizer on Initial Response of Self Controlled Externally Pressurized Bearings,” Trans. JSLE, Vol. 20, pp.651-657.
[15] Tully, N., 1977, “Static and Dynamic Performance of an Infinite Stiffness Hydrostatic Thrust Bearing,” Trans. of ASME. Vol. 99, No.1, pp.106-112
[16] Yoshimoto, S., Anno, Y., Amari K., 1990, “Static Characteristics of Hydrostatic Journal Bearing with a Self Controlled Restrictor Employing Floating Disk,” Trans. JSLE. Vol. 56, pp.3360-3367.
[17] Yoshimoto S., Kikuchi K., 1999, “Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictor Employing Floating Disk,” Trans. Int. Vol.121, No.4, pp. 315-320.
[18] Robert Schoenfeld. Flow-rate regulator for liquid and/or gaseous materials. D.E. Patent No. 3150117 A1(1983).
[19] Robert Schoenfold, 2001, “Regulator for Adjusting the Fluid Flow in a Hydrostatic or Aerostatic Device.” US Patent number 6276491B1.
[20] 王翊丞, 2015, “液靜壓軸承複合型節流裝置設計與實驗.” 國立清華大學動力機械系碩士論文。
[21] McCulloch, W.S. & Pitts, 1943, W. Bulletin of Mathematical Biophysics 5: 115.
[22] Henry S. Tropp, Von Neumann, John, Chichester 2003, Encyclopedia of Computer Science, 4th edition, John Wiley and Sons Ltd.
[23] Hebb, D.O., 1949, The Organization of Behavior. New York: Wiley & Sons.
[24] Rosenblatt, Frank, 1957, The Perceptron--a perceiving and recognizing automaton. Report 85-460-1, Cornell Aeronautical Laboratory.
[25] B. Widrow, 1960, Adaptive "adaline" neuron using chemical "memistors.". Stanford Electronics Laboratories.
[26] Minsky, M., Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. Cambridge, MA, USA: MIT Press.
[27] J. J. Hopfield, April 1982, "Neural networks and physical systems with emergent collective computational abilities", Proceedings of the National Academy of Sciences of the USA, vol. 79 no. 8 pp. 2554–2558.
[28] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, 1986, “Learning representations by back-propagating errors”, Nature, Vol.323, pp. 533-536.
[29] Bruus, 2008, H. "Theoretical microfluidics. Oxford master series in condensed matter physics."
[30] Fox & McDonald, 2012, Fluid Mechanics, 8ED, John Wiley & Sons Inc.
[31] 鍾洪,張冠坤, 2007, 液體靜壓動靜壓軸承設計使用手冊,電子工業出版社:p.30
[32] Slocum, Alexander H., 1992, Precision Machine Design, Prentice Hall Inc. Dear born, Michigan
[33] 李威志, 2012, “新型主動式補償液靜壓軸承之靜動態特性分析,” 國立清華大學動力機械系碩士論文。
[34] 鮑思丞, 2016, “智慧型線性液靜壓滑塊模組設計,” 國立清華大學動力機械系碩士論文。
[35] 羅華強, 2011, 類神經網路—MATLAB的應用,高立圖書。
[36] John Hearty, David Julian, Sebastian Raschka, 2016, Python: Deeper Insights into Machine Learning, Packt Publishing
[37] Neuron, Wikipedia, 網路資源, https://en.wikipedia.org/wiki/Neuron。
[38] Standford CS class, CS231n: Convolutional Neural Networks for Visual Recognition., http://cs231n.github.io/neural-networks-3/ 。
[39] 盧佳崴, 2012, “新型主動式補償液靜壓軸承設計及實驗驗證,” 國立清華大學動力機械系碩士論文。
[40] 網路資源,https://www.spirol.com/library/main_catalogs/SPIROL-Disc-Springs-us.pdf